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Gerard Vishniac 
Lab for Computer Science 
MIT 
77 Massachusetts Ave 
Cambridge 
MA 02139 

Dear Gerard 

We spoke briefly on the 'phone about the cellular automata 
machine for the gallery here. I am now writing to ask you for the 
following photographs for our static displays: 

1. Snowflake-type pattern 

2. Wave-motion type pattern 

3. Game of life example. 

I have tried in vain to reach one of your group on the 'phone 
without success. We need the images by Wednesday of next week,­
September 26 at the absolute latest. Slides or prints will do, 
but the sooner you can get the material to us the better. 

Please also let me know how you and Kent Multer are getting on. 
We have the IBM PC now. It has an IBM color graphics card in it 
and an IBM color monitor. I would like to use your machine in 
conjunction with I-d examples being programmed for,us by Stephen 
Wolfram, so we need to discuss the interface. Note that 'all, 
interaction should be via numeric keys 0-9 and an enter key only. 

Thank you for your participation. I look forward to hearing from 
you. 

... 
Yours sincerely 

~rl~~ 
Curator 

cc: Norman Margolis, Tomaso Toffoli ~ 
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July 19 1984 

Tomaso Toffoli 
Lab for Computer Science 
MIT 
77 Mass Ave 
Cambridge 
MA 02139 

Dear Tomaso 

Further to our recent telephone conversation I enclose some 
information on The Computer Museum: The latest issue of 
The Computer Museum Report, the brochure prepared for our Capital 
Campaign, and an outline of the gallery The Computer and the 
Image. 

We hope to integrate an IBM PC with your card into the Image 
gallery. Visitors would be invited to input either initial 
configuations or rules in some carefully controlled way so that 
they had a good chance of doing something satisfying in 5-10 
minutes. We need to know the configuration required for the IBM 
PC as soon as possible. 

I look forward to our meeting on August 1. I will call you that 
morning to confirm. 

Yours sincerely 

Dr Oliver Strimpel 
Curator 

enclosures 



THE INSTITUTE FOR ADVANCED STUDY 

SCHOOL OF NATURAL SCiENCES 

Dr. Oliver Strimpel, 
The Computer Museum, 
300 Congress Street, 
Boston, MA 02210. 

Dear Oliver, 

PRINCETON, NEW JERSEY 08540 

Telephone 609-734-8000 

September 25, 1984 

Here are the text and slides for the cellular automaton exhibit. 
I have enclosed eight one-dimensional slides. It might be nice to use all 
eight, but perhaps it would be best to have them printed and see which six 
look best together. I have also enclosed a two-dimensional snowflake pattern. 
If necessary, we could generate other two- dimensional patterns (they just 
run rather slowly on our computer). 

On the one- dimensional slides: each slide should be cropped to remove 
the caption. The ones with simple initial states should be arranged so that 
the bottom of the pattern coincides with the bottom of the picture ; the top 
of the pattern should however be somewhat below the top of the picture, I 
think. For the patterns with random initial states, the bottom of the picture 
should again coincide with the bottom of the pattern. In so far as the top 
of the pattern is not straight (due to the curvature of the TV screen), it could 
be cropped off. 

Please no~ that the one-dimensional patterns are copyrighted by me; 
the snowflake pattern is copyrighted by Norman H. Packard. 

We are trying to work on the software this week. I am not sure if 
we will get it done by the end of this week, but I expect to have it by 
the beginning of next week. 

Regards, 

~~. 



Cellular Automata 
Complex patterns found in nature are often built up from simple components. Cellular automata 
are mathematical models in which complex patterns are formed by the repeated action of simple 
rules. Computer simulation and computer graphics are essential tools in their investigation. "'Fbis-

.. exhi.bj sh,@ws wm ~~amples Gf th atterns they produce. 

(1 10 pictures; © 1984 Stephen Wolfram) 0 f'-t ". ~~ 
One-dimensional cellular automata -(ithtsl7r-ated- ahove-r consist of a line of cells. The colour of each 
cell is chosen H-efFl-a_~_I1QS5·jhjJif:ies according to a rule that depends on the colours of the cells 
immediately around it on the line above. Even though the rules are simple, the patterns produced 
by applying them over and over again can be highly complex. The top row of pictures show the 
results of growth f-r-om- a-s'C·ed- ceB-sisti-n.g- 0f a single red cell. The bottom row shows evolution Crom 
a random initial state. The rules illustrated gives examples of several of the classes of behaviour 
found . But there are an immense number of possible cellular automaton rules. With the computer 
demonstration YOIl can select and study your own rule. 

(42D pictures) 

Two-dimensional cellular automata consist of a grid of cells. The pictures above are still frames 
from a computer simulation of their evolution. The top left-hand picture is an example of the 
notorious "Game of Life" - a two-dimensional cellular automaton with very varied behaviour stu­
died by recreational mathematicians for over a decade. The other pictures show cellular automa­
ton model., for various natural phenomena: snowflakes, ripples on a pond, and water flowing past 
a cylinder. 7 
In the computer demonstration of one-dimensional cellular automata, ~ , 
corresponding to valu es zero through four for each cell (a:black, l :red, 2:green; 3:blue, 4:~ ~~ 
???). The rules take the value of a cell to be determined by the sum of its own previous value, and 
th~ previolls values of its immediate neighbours to the lert and right: aj' =/ (aj_l+a, +a'+l) ' 
The function f (n) specified by a code number. The code number is initially computed in base 
five . Starting from the right-hand end, the first digit gives f (a), the next f (1), and so on; the 
left-hand digit is f (12). The code numbers are entered in decimal, then converted to base five. 

For further information, see: 

S. Wolfram, "Computer software in science and mathemat.ics", Scientific American, Sep­
tember 1984, p. 188; 

S. Wolfram , "Cellular automata as models of complexity", Nature, XXXXXXXXXXXJCXX. 
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. ~ MATHEMATICAL GAMES 
On cellular automata, self-reproduction, 

the Garden of Eden and the game "life" 

by Martin Gardner 

j ohn Horton Conway's game «life," 
last October's topic, stirred such in­
terest among computer scientists that 

this month's department will again be 
devoted to the game. Before reporting 
as many new discoveries as possible I 
should like to discuss some highlights in 
the history of "cellular automata theory," 
the field in which games similar to Con­
way's are being investigated. 

It all began about 1950, when John 
von Neumann set himself the task of 
proving the possibility of self-duplicating 
automata. Such a machine, given proper 
instructions, would build an exact dupli­
cate of itself. Each of the two machines 
would then build another, the four 
would become eight, and so on. (This 
proliferation of self-replicating automata 
is the basis of Lord Dunsany's amusing 
1951 novel The Last Revolution.) Von 
Neumann first proved his case with 
"kinematic" models of a machine that 
could roam through a warehouse of 
parts, select needed components and put 
together a copy of itself. Later, adopting 
an inspired suggestion by his friend 
Stanislaw M. Ulam, he showed the pos­
sibility of such machines in a more ele­
gant and abstract way. 

Von Neumann's new proof used what 
is now called a "uniform cellular space" 
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equivalent to an infinite checkerboard. 
Each cell can have any finite number 
of "states," including a "quiescent" (or 
empty) state, and a finite set of "neigh­
bor" cells that can influence its state. The 
pattern of states changes in discrete time 
steps according to a set of «transition 
rules" that apply Simultaneously to ev­
ery cell. The cells symbolize the basic 
parts of a finite-st,ate automaton and a 
configuration of live cells is an idealized 
model of such a machine. Conway's 
game is based on just such a space. His 
neighborhood consists of the eight cells 
surrounding a cell; each cell has two 
states (empty or filled), and his transition 
rules are the birth, death and survival 
rules I explained in October. Von Neu­
mann, applying transition rules to a 
space in which each cell has 29 stutes 
and four orthogonally adjacent neigh­
bors, proved the existence of a configura­
tion of about 200,000 cells that would 
self-reproduce. 

The reason for such an enormous con­
figuration is that, for von Neumann's 
proof to apply to actual automata, it was 
necessary that his cellular space be capa­
ble of simulating a Turing machine: an 
idealized automaton, named for its in­
ventor, the British mathematician A. M. 
Turing, capable of performing any de­
sired calculation. By embedding this uni­
versal computer in his configuration, von 
Neumann was able to produce a univer­
sal constructor. Because it could in prin­
ciple construct any desired configura-
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The replication 0/ a tromino 

tion by stretching "arms" into an empty 
region of the cellular space, it would 
self-replicate when given a blueprint of 
itself. Since von Neumann's death in 
1957 his existence proof (the actual 
configuration is too vast to construct and 
manipulate) has been greatly simplified. 
The latest and best reduction, by Edwin 
Roger Banks, a mechanical engineering 
graduate student at the Massachusetts 
Institute of Technology, does the job 
with cells of only four states. . 

Self-replication in a trivial sense-­
without using configurations that con­
tain Turing machines-is easy to achieve. 
A delightfully simple example, discov­
ered by Edward Fredkin of M.LT. about 
10 years ago, uses two-state cells, the 
von Neumann neighborhood of four 
orthogonally adjacent cells and the fol­
lOWing parity rule: Each cell with an 
even number <}f live neighbors (0, 2, 4) 
at time t becomes or remains empty at 
time t + 1, and each cell with an odd 
number of neighbors (1, 3) at time t be­
comes or remains live at time t + 1. It is 
not hard to show that after 2ft moves (n 
varying with different patterns) any ini­
tial pattern of live cells will reproduce 
itself four times-above, below, left and 
right of an empty space that it formerly 
occupied. The four replicas will be dis­
placed 2n cells from the vanished origi­
nal. The new pattern will, of course, 
replicate again after another 2n steps, so 
that the duplicates keep quadrupling in 
the endless series 1, 4, 16, 64, .... The 
illustration below shows two quadru­
plings of a right tromino. Terry Wino­
grad, in a 1967 term paper written when 
he was an M.LT. student, generalized 
Fredkin's rule to other neighborhoods, 
any number of dimensions and cells with 
any prime number of states. 

Ulam investigated a variety of cellu­
lar automata games, experimenting with 
different neighborhoods, numbers of 
states and transition rules. In a 1967 
paper "On RecurSively Defined Geomet-
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rical Objects and Patterns of Growth," 
written with Robert C. Schrandt, 
Ulam described a number of different 
games. The upper illustration on this 
page shows generation 45 of a history 
that began with one counter on the cen­
tral cell. As in Conway's game, the cells 
are two-state, but the neighborhood is 
that of von Neumann (four adjacent or­
thogonal celis). Births occur on celIs that 
have one and only one neighbor, and all 
live cells of generation n vanish when 
generation n + 2 is born. In other words, 
only the last two generations survive at 
~y step. In the illustration the 444 new 
births are shown as black cells. The 404 
white celIs of the preceding generation 
will all disappear on the next move. Note 
the characteristic subpattern, which 
Ulam calis a "dog bone." Ulam experi­
mented with games in which two con­
flgurations were allowed to grow until 
they collid&:l. In the ensuing "battle" one 
side would sometimes wipe out the oth­
er; sometimes both armies would be an­
nihilated. Ulam also explored games on 
three-dimensional cubical tessellations. 
His major papers on cellular automata 
are in Essays on Cellular Automata (Uni­
versity of Illinois Press, 1970), edited by 
Arthur W. Burks. 

Similar games can be devised for tri­
angular and hexagonal tessellations but, 
although they look different, they are 
not essentially so. All can be translat­
ed into equivalent games on a square 
tessellation by a suitable deflnition of 
"neighborhood." A neighborhood need 
not be made up of touching celIs. In 
chess, for instance, a knight's neighbor­
hood consists of the squares to which it 
can leap and squares on which there are 
pieces that can attack it. As Burks has 
pointed out, games such as chess, check­
ers and go can be regarded as cellular 
automata games in which there are com­
plicated neighborhoods and transition 
rules and in which players choose among 
alternative next states in an attempt to 
be flrst to reach a certain flnal state that 
wins. 
, Among the notable contributions of 

Edward F. Moore to cellular automata 
theory the best-known is a technique for 
proving the existence of what John W. 
Tokey named "Garden of Eden" pat­
terns. These are conflgurations that can­
not arise in a game because no preceding 
generation can form them. They appear 
only if given in ,the initial (zero) genera­
tion. Because such a' conflguration has 
no predecessor, it cannot be seH-repro­
ducing. I shall not describe Moore's in­
genious technique because he explained 
it informally in an article in this mnga-

zine [see "Mathematics in the Biological 
Sciences," by Edward F. Moore; Sep­
tember, 1964] and more formally in a 
paper that is included in Burks's anthol­
ogy. 

Alvy Ray Smith III, a cellular autom­
ata expert at New York University's 
School of Engineering and Science, 
found a simple application of Moore's 
technique to Conway's game. Consider 
two flve-by-flve squares, one with all 
celis empty, the other with one counter 
in the center. Because, in one move, the 
central nine cells of both squares are 
certain to become identical (in this case 
all cells empty) they are said to he 
"mutually erasable." It follows from 
Moore's theorem that a Garden of Eden 
conflguration must exist in Conway's 
game. Unfortunately the proof does not 
tell how to flnd such a pattern and so far 
none ~ known. It may be simple or it 

may be enormollsly complex. Using one 
of Moore's formulas, Smith has bee'ft able ' 
to calculate that such a pattern exists 
within a square of 10 billion cells on a 
side, which does not help much in find­
ingone. 

Smith has been working on cellular 
automata that simulate pattern-recogni­
tion machines. Although this is now only 
of theoretical interest, the time may 
come when robots will need "retinas" for 
recognizing patterns. The speeds of 
scanning devices are slow compared with 
the speeds obtainable by the "parallel 
computation" of animal retinas, which 
simultaneously transmit thousands of 
messages to the brain. Parallel computa­
tion is the only way new computers can 
increase significantly in speed because 
without it tiley are limited by the speed 
of light through miniaturized circuitry 
[see "The Fastest Computer," by D. L. 

Generation 45 in a cellular 8ame tie vised by Stanislaw M. Ulam 
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Slotnick, page 76]. The cover of this is­
spe of SCIENTIFIC AMERICAN shows a 
simple procedure, devised by Smith, by 
which a finite one-dimensional cellular 
space employs parallel computation for 
recognizing palindromic symmetry. Each 
cell has many possible states, the number 
depending on the number of different 
symbols in the palindrome, and a cell's 
neighborhood is the two cells on each 
side. 

On the cover, which Smith designed, 
he symbolizes the palindrome TOO HOT 
TO HOOT with four states of cells in the 
top row. T, 0 and H are represented by 
blue, red and yellow respectively, and 
black marks the palindrome's two ends. 
The white cells in the other rows are in 
the quiescent state. The horizontal rows 
below the top row are successive gen­
erations of the top configuration when 
certain transition rules are followed in 
discrete time steps. In other words, the 
picture is a space-time diagram of a sin­
gle row, each successive row indicating 
the next generation. 

In the first transition each color travels 
one cell to the left and one cell to the 
right, except for the end colors, which 
are blocked by black; black moves in­
ward at each step. Each cell on which 
two colors land acquires a new state, 
symbolized by a cell divided into four 
triangles. The left triangle has the color 
that was previously on the left, the right 
triangle has the color previously on the 
right. The result of this first move is 
shown in the second row. When an ad­
jacent pair of cells forms a tilted square 
in the center that is a solid color, it in­
dicates a "collision" of like colors and is 
symbolized by black dots in the two 
white triangles of the left cell. Dots re­
main in that cell for all subsequent gen­
erations unless a collision of unlike col­
ors occurs to the immediate right of the 
dotted cell, in which case the dots are 
erased. When collisions of unlike colors 
occur, the left cell of the pair remains 
undotted for all subsequent generations 
even though like colors may later collide 
on its right. 

. ; 
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At each move the colors continue to 
travel one cell left or right (the direction 
in which the colored triangles point) and 
all rules apply. If the palindrome has n 
letters, with n even as in this example 
(the scheme is modified slightly if n is 
odd), it is easy to see that after n/2 
moves only two adjacent nonquiescent 
cells remain. If the left cell of this pair 
is dotted, the automaton has recognized 
the initial row as being palindromic. 
Down the diagram's center you see the 
colliding pairs of like colors in the same 
order as they appear on the palindrome 
from the center to each end. As soon as 
recognition occurs the left cell of the last 
pair is erased and the right cell is altered 
to an "accept" state, here symbolized by 
nested squares. An undotted left cell 
would signal a non palindrome, in which 
case the left cell would become blank 
and the right cell would go into a "re­
ject" state. 

A Turing machine, which computes 
serially, requires in general n2 steps to 
recognize a palindrome of length n. Al-
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though recognition occurs here at step 
71/2, the accept state is shown moving in 
subsequent generations to the right to 
svmbolize the cell-by-cell transmission of 
the acceptance to an output boundary 
of the cellular space. Of course it is easy 
to construct more efficient palindrome­
recognizing devices with actual electron­
ic hardware, but the point here is to do 
it with a highly abstract, one-dimension­
al cellular space in which information 
can pass only from a cell to adjacent cells 
and not even the center of the initial 
series of symbols is known at the outset. 
As Smith puts it anthropomorphically, 
after the first step each of the three dot­
ted cells thinks it is at the center of a 
palindrome. The dotted cells at each end 
are disillusioned on the next move be­
cause of the collision of unlike colors at 
their right. Not until generation n/2 
does the dotted cell at the center know 
it actually is at the center. 

Now for some startling new results 
concerning Conway's game. Conway was 
fully aware of earlier games and it was 
with them in mind that he selected his 
recursive rules with great care to avoid 
two extremes: too many patterns that 
grow quickly without limit and too many 
that fade quickly. By striking a delicate 
balance he deSigned a game of surprising 
unpredictability and one that produced 
such remarkable figures as oscillators 
and moving spaceships. He conjectured 
that no finite population could grow (in 
number of members) without limit, and 
he offered $50 for the first proof or dis­
proof. The prize was won in November 
by a group in the Artificial Intelligence 
Project at ~I.I.T. conSisting of (in alpha­
betical order) Robert April, Michael 
Beeler, R. William Gosper, Jr., Richard 
Howell, Rich Schroeppel and l\Hchael 
Spedner. Using a program devised by 
Speciner for displaying moves on an 
oscilloscope, Gosper made a truly as­
tounding discovery: he found a glider 
gun! The configuration in the lower illus­
tration on page 113 grows into such a 
gun, firing its first glider on move 40. The 
gun is an oscillator of period 30 that 
ejects a new glider every 30 moves. Since 
each glider adds five more counters to 
the field, the population obViously grows 
without limit. 

The glider gun led the M.LT. group 
to many other amazing discoveries. A 
series of printouts (supplied by Robert 
T. Wainwright of Yorktown Heights, 
N.Y.) shows how 13 gliders crash to form 
a glider gun [see illustration on page 
117]. The last five printouts show the 
gun in full action. The group also found 
a way to position a pcntadecathlon [see 

Barber pole (lelt) , Hertz oscillator (middle) and tumbler (right) 
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The Cheshire cat (O) fades to a grin (6) and disappears, leaving a paw IJrillt (7) 
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Tu:o SfJau:ncrs of glidcrs and two collision courscs 

illustration on page 114], an oscillator of 
period 15, so that it "eats" every glider 
that strikes it. A pentadecathlon can also 
reRect a glider 180 degrees, making it 
possible for two pentadecathlons to 
shuttle a glider back and forth forever. 
Streams of intersecting gliders produce 
fantastic results. Strange patterns can be 
created that in tum emit gliders. Some­
times collision configurations grow until 
they ingest all guns. In other cases the 
collision mass destroys one or more guns 
by shooting back. The group's latest 
burst of virtuosity is a way of placing 
guns so that the intersecting streams of 
gliders build a factory that assembles and 
fires a lightweight spaceship every 300 
moves. 

The existence of glider guns raises 
the exciting possibility that Conway's 
game will allow the simulation of a Tu­
ring machine, a universal calculator ca­
pable in principle of doing anything the 
most powerful computer can do. The 
trick would be to use gliders as unit 
pulses for storing and transmitting in­
formation and perfOlming the required 
logic operations that are handled in ac­
tual computers by their circuitry. If Con­
way's game allows a universal calculator, 
the next question will be whether it al­
lows a universal constructor, from which 
nontrivial self-replication would follow. 
So far this has not been achieved with a 
two-state space and Conway's neighbor-

PI1/lcm doomcd by a virus (color) 

116 

hood, although it has been proved im­
possible with two states and the von 
Neumann neighborhood. 

The M.I.T. group found many new 
oscillators [see top illustration on lJre­
ceding page]. One of them, the barber 
pole, can be stretched to any length and 
is a Hip-Hop; with each state a mirror 
image of the other. Another, which they 
rediscovered, is a pattern Conway's group 
had found earlier and called a Hertz os­
cillator. Every four moves the colored 
"bit" switches from one side of the cen­
tral frame to the other, making it an os­
cillator of period 8. The tumbler, which 
was found by George D. Collins, Jr., of 
McLean, Va., turns upside down every 
seven moves. 

The Cheshire cat [see middle illustra­
tion on preceding page] was discovered 
by C. R. Tompkins of Corona, Calif. On 
the sixth move the face vanishes, leaving 
only a grin; the grin fades on the next 
move and only a permanent paw print 
(block) remains. The harvester was con­
structed by David W. Poyner of Basil­
don in England. It plows up an infinite 
diagonal at the speed of light, oscillating 
with period 4 and ejecting stable pack­
ages along the way [see bottom illustra­
tion on preceding page]. "Unfortunate­
ly," writes Poyner, "I have been unable 
to develop a propagator that will sow as 
fast as the harvester will reap." 

Wainwright has made a number of 
intriguing investigations. He filled a 120-
by-120 square field with 4,800 randomly 
placed bits (a density of one-third) and 
tracked their history for 450 generations, 
by which time the density of this primor­
dial soup, as Wainwright calls it, had 
thinned steadily to one-sixth. Whether it 
would eventually vanish or, as 'Vain­
wright says, percolate at a constant mini­
mum denSity is anybody's guess. At any 
rate, during the 450 generations 42 
short-lived gliders were fOlmed. Wain­
wright found 14 different patterns that 
became glider states on the next move. 
The pattern that produced the greatest 
number of gliders (14 in all) is shown 
["a" in illustration above]. A Z-pattern 
found by CoIlins and by Jcffrcy Lund of 

Pewaukee, 'Vis., after 12 moves becomes 
two glidcrs that sail off in opposite di­
rections [b]. Wainwright and others set 
two gliders on a collision course that 
causes all bits to vanish on the fourth 
move [c]. Wallace W. Wagner of Ana­
heim, Calif., found a collision course for 
two lightweight spaceships that also ends 
(on the seventh move) in total blank­
ness [ell. 

\Vainwright has experimented with 
various infinite fields of regular stable 
patterns, which he calls agars-rich cul­
ture mediums. 'Vhen, for instance, a sin­
gle "virus," or bit, is placed in the agar 
of blocks shown in the illustration at 
bottom left so that it touches the corners 
of four blocks, the agar eliminates the 
virus and repairs itself in two moves. If, 
however, the alien bit is positioned as 
shown (or at any of the seven other sym­
metrically equivalent spots), it initiates 
an inexorable disintegration of the pat­
tern. The portion eaten away contains 
active debris that has overall bilateral 
symmetry along one axis and a roughly 
oval border that expands, probably for­
ever, in the four compass directions at 
the speed of light. 

The most immediate practical appli­
cation of automata theory, Banks be­
lieves, is likely to be in the design of cir­
cuits capable of self-repair or the wiring 
of any specified type of new circuit. No 
one can say how significant the theory 
may eventually become for the physi­
cal and biological sciences. It may have 
important bearings on cell growth in 
embryos, the replication of DNA mole­
cules, the operation of nerve nets, ge­
netic changes in evolving populations 
and so on. Analogies with life processes 
are impossible to resist. If a primordial 
broth of amino acids is large enough, and 
there is· sufficient time, self-replicating, 
moving automata may result from com­
plex transition rules built into the struc­
ture of matter and the laws of nature. 
There is even the possibility that space­
time itself is granular, composed of dis­
crete units, and that the universe, as 
Fredkin and others have suggested, is a 
cellular automaton run by an enomlOUS 
computer. If so, what we call motion may 
be only simulated motion. A moving 
spaceship, on the ultimate microlevel, 
may be essentially the same as one of 
Conway's spaceships, appearing to move 
on the macrolevel whereas actually there 
is only an alteration of states of basic 
spuce-time cells in obedience to transition 
rules thut have not yet been discovered. 

To the corrections given last month 
for the original discussion of Conway's 
game the following should be aducd. An 



ortllOgoll,d row of eight adjacent coun­
tcrs ends as fo ur blocks and four bee­
hi\ 'es, and the 5-5- 5 row ends as four 
blocks and two blinkers. In November's 
illust ration of a large spaceship escorted 
by two small er ones, the top ship should 
ha\'e been separated by three cells from 
the middle one. Readers too nu merous to 
lIlention have confirm ed all three correc­
tions. 
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The num her puzzles posed last mOll th 
by D r. Matrix have the fo llowing an­
swers. In addition to 9,240, the only 
other number smaller than 10,000 that 
has 63 proper divisors (including 1 but 
not the number itself) is 7,560. No other 
nu mber of fo ur or fewer d igits has this 
many proper diviso rs. Here is the only 
way to arran ge two three-digit square 
num bers in a two-by-three matrix so tha t 

Q 0 0 
o 

o • 
• 

GENERATION 11 

0 0 
00 o 

o n 0 
• 0 

each co lumn, read from the top dO\\'n, is 
a two-digit square : 

841 
196. 

A newsletter, T he Soma Addict, is 
now a"aibble at no charge on request 
from Parker Brothers, P.O. Box 900, 
Salem, ~Iass. 01970. 
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LIFE AND DEATH ON 
A COMPUTER SCREEN 
Using a game-like mathematical concept known as cellular 
automata, some brash young scientists are trying to find 
the rules that govern one of nature's most profound mysteries 

BY CARLA REITER 

I
t looks like a video game gone slightly berserk. 
One line of squares-some green, some blue­
forms across the computer screen, then quickly 
gives birth to another directly beneath it, with 

the colored squares in different order. This in turn 
yields still another line. As the new lines appear, one 
beneath the other, like slats of a slowly descending 
venetian blind, the random pattern of squares be­
comes more complex. Some squares turn into a field . 
of triangles. Others form meandering, ivy-like, vio­
let tendrils. In one corner, red and green squares in­
tertwine to become a braid. 

"Looks like a class four, rather a pretty one," 
says the rumpled young man at the computer ter­
minal. Stephen Wolfram is not a video game addict 
but a scientist in the midst of an ambitious quest. 
The emerging pattern on the screen is a simple yet 
powerful mathematical tool called a cellular au­
tomaton. That is the forbidding name for arrays of 
squares-or "cells"-that operate under certain 
simple rules, generation after generation, interact­
ing with neighboring cells to die or to live and 
reproduce. 

To mathematicians, cellular automata are fasci­
nating abstractions. But to Wolfram, 25, a physicist 
at the Institute for Advanced Study in Princeton, 
New Jersey, they are much more. They are helping 
him look for fundamental laws governing growth 
and evolution in nature. He has already found hints 
of such an ordering principle with the discovery 
that the development of the myriad patterns seems 
to occur in certain broad categories, or classes. Says 
Wolfram of his work, "It's kind of a grandiose thing 
to do." 

Grandiose indeed. From filigreed snowflakes that 
grow from random bits of ice to spiraling mollusc 
shells that evolve from a few organic molecules, the 
natural world abounds with complex structures 
that grow from simple parts. There is probably no 
better example than life itself, which evolved from a 

DISCOVER I AUGUST 1984 

Physicist Stephen Wolfram ponders his electronic 
universes in his Princeton office. The screens below 
show examples of various classes of automata. 

handful of primitive cells into the rich diversity of 
species on the earth today. But under what mysteri­
ous direction did these cells organize themselves 
into forms of such astonishing complexity? 

Scientists still do not have a satisfactory answer. 
All self-organizing systems, as scientists call them, 
even a snowflake or an amoeba, are so intricate that 
the general laws governing their growth are buried 
under layers of obscuring detail. Says Norman 
Packard, 30, Wolfram's colleague, "You can't even 
write down the equations for biological evolution 
because there is just too much going on." And even 
when the equations for growth are known, as in the 
case of nonbiological systems like crystallizing 
snowflakes, they provide no insight into how the 
overall form develops. Yet scientists are convinced 
that some universal governing principle underlies 
the evolution of the multiplicity of forms in nature. 

In search of this principle, Wolfram and Packard 
turned to cellular automata-something they could 
not have done without powerful computers to per-
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DO-IT-YOURSELF AUTOMATON 
The diagrams at the right show a simple 
cellular automaton created by the fol­
lowing rule: as each new row is added to 
the growing pattern, a square is colored 
if one, and only one, of the three squares 
immediately above it in the previous row 
(either the one directly overhead or one 
of the two adjacent to it) is also colored. 
Otherwise, the new square is left blank. 
As a starting condition, the automaton 
has only a single row with one colored 
square. The next generation, or line be­
low, then has three colored squares, the 
third row two colored squares, and so 
forth. 

You can generate this simple pattern 
on your own computer with the follow­
ing Basic language program. The pro­
gram was written for the IBM PC but 
should run, with slight modification, 

form the prodigious number of calcula­
tions required to investigate the growth of 
automata over millions and millions of 
generations. Using these machines, they 
create what Packard calls "little toy uni­
verses," in which they explore the way 
complicated, ordered structures can grow 
out of initial conditions of disorder. Says 
Packard, "We're looking at really simple 
possibilities-idealized examples-that dis­
play this self-organizing behavior. Then 
we can look at real systems and pull out the 
features that are doing the organizing." 

Thomaso Toffoli, a computer scientist 
at the Massachusetts Institute of Technol­
ogy, believes cellular automata are so 
mathematically powerful that they could 
supplant the unwieldy differential equa­
tions that have been used to solve the 
problems of physics since Isaac Newton's 
day, and has designed a special-purpose 
computer to investigate them. Unlike the 
Princeton machines, which generate pat­
terns at the pace of a slow-motion movie, 
Toffoli's computer, a veritable Maserati of 
its kind, creates generation after genera­
tion faster than the blink of an eye. 

T
he invention of cellular automata 
is generally credited to John von 
Neumann, the Hungarian-born 
mathematical genius and pioneer­

ing computer theorist who also worked at 
Princeton. Like Wolfram and Packard af­
ter him, he wanted to find a mathematical 
basis for biology. At the suggestion of 
Stanislaw Ulam, another emigre math­
ematician (from Poland), von Neumann 
devised what was in effect a mathematical 
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analogue, or model, of life. All complicat­
ing chemistry was stripped away and only 
the most essential features-the ability to 
grow and reproduce-were preserved. 

To understand a cellular automaton, 
imagine it as a game in which people are 
the cells. At the start, the players arrange 
themselves in a line. Some sit down, some 
stand, in no particular order. "There are 
only two possi ble moves in t his game," say 
the rules. "You can sit down, or you can 
stand up. You will decide which you do by 
looking at the two people on either side of 
you. If both are sitting or standing, you sit. 
If one is standing, you stand. Everybody 
decides what to do and, when you hear the 
signal, you make your moves at once." 
The players check their neighbors' status 
and, at the whistle, assume the appropri­
ate position, changing the configuration of 
the line. At the next whistle they repeat 
the action, following the same rules. Each 
whistle signals a new generation and a 
new pattern. 

On a computer, the game is played hun­
dreds or thousands of times, each round 
starting from the arrangement that re­
sulted from the previous turn. Cells­
squares in a horizontal line on the comput­
er screen-represent the players. After 
each round of play, the new configuration 
of cells is added below those formed in pre­
vious rounds, thus preserving the automa­
ton's life history. When the screen is filled, 
it will scroll upward to make more room. 

Von Neumann managed to outline some 
pathways for future research with cellu­
lar automata, but his promising work was 

on almost any other personal machine. 

10 DEFINT A-C,R,X 
20 DIM ROW(80) 
30 ROW(40)=1 
40 SO$(O)=// //:SO$(1)=CHR$(178) 
50 B=ROW(0):C=ROW(1) 
60 FOR X=1 TO 79 
70 PRINT SO$(ROW(X)); 
80 A=B:B=C:C=ROW(X+1) 
90 IF (A+B+C)=1 THEN 

ROW(X) = 1 ELSE ROW(X) =0 
100 NEXT X 
110 PRINT 
120 GOTO 50 

To make the automaton more complex, 
try changing the program by varying 
the starting condition, altering the rules, 
or printing squares in different colors. 

cut short by his death in 1957 at the age of 
54 from cancer-itself a kind of self-repro­
ducing automaton. Still, even in von Neu­
mann's day, it was clear that any experi­
ments with cellular automata would 
require computers with enormous memo­
ries and high speed. Though the course of 
the generations can be charted with home 
computers (see box), or even on graph pa­
per, only such machines are able to churn 
out a sufficient number of generations for 
any meaningful statistical analysis. 

Even so, cellular automata can be a test 

Norman Packard observes the growth of 
his snowflake automata, which are shown, at 
right, in various stages of development. 
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for today's most powerful computers. A 
single rule can generate a bewildering va­
riety of life histories if the starting lineup 

. of cells is changed. For some elaborate au­
tomata, the number of possible rules for 
determining the life or death of cells is 
greater than the number of particles in 
the universe (1080). Yet in all the diversity 
that he has seen played out on his comput­
er screens, Wolfram has spotted signs of 
some general principles at work. 

"You begin to see there are really only 
four different kinds of things that hap­
pen," he says, "and those can be charac­
terized visually in an extremely simple 
way." He has used these visual clues to 
postulate four different classes of rules 
governing cellular automata. One class 
produces patterns that die out after a few 
rounds of play. Another builds structures 
that swing endlessly back and forth be­
tween two patterns. A third grows into ba­
roque, apparently chaotic, tangles, and a 
fourth class-the most intriguing-pro­
duces a potpourri of structures that in­
cludes elements of the other three classes. 

B
ut before either Wolfram or Pack­
ard can discern any principles 
that may underlie the generation 
of these patterns, they must deal 

with an obstacle that has stymied every in­
vestigator of self-organizing behavior so 
far. That is the nature of complexity itself. 
While it is intuitively clear that a seashell 
is more complicated than, say, the period at 
the end of this sentence, no one-not even 
von Neumann-has been able to provide a 
definition of complexity that is mathemati­
cally rigorous and broad enough to be uni­
versally applicable. As Packard explains, 
"If you want to understand how to grow 
something that is more and more compli­
cated, you have to know what 'more and 
more complicated' means." 

Wolfram defines complexity in terms of 
idealized computers called, in mathemati­
cal jargon, finite state machines. By this 
reasoning, a simple class of patterns is one 
produced by a simpler computer than that 
required to produce a more complicated 
class. That may seem like a dodge to get 
around an insurmountable hurdle, but in 
fact it provides him with a rigorous and 
flexible definition of complexity. By estab­
lishing the size of the smallest computer 
capable of generating a particular class of 
patterns, Wolfram is able to get a measure 
ofthe pattern's complexity; this gives him 
a base from which to study the evolution of 
the complex forms on his screen. 

Packard studies snowflakes. These are 
six-sided figures that grow from a simple 
"seed," or icy nucleus, into a seemingly in­
finite variety of forms. Like von Neu-

mann's models of life, Packard's comput­
erized snowflakes preserve only the key 
features of growth and evolution. His cre­
ations begin life as a small cluster of hex­
agonal cells in the center of the tube, 
which gradually spread outward in all di­
rections until the screen fills. As a comput­
erized snowflake grows, only the cells on 
its periphery influence the next move. In 
essence, the edge of the snowflake is a one­
dimensional automaton, like Wolfram's 
descending strings of cells. 

There is obviously a world of difference 
between nature and cellular automata. 
The rules that control the growth of Pack­
ard's "snowflakes," for example, do not 
include any details of chemistry, or the 
thermodynamic laws that govern the 
transfer of heat and energy in snowflakes 
created by nature. But the work with cel­
lular automata is only in its infancy. Wol-

MIT's Tommaso Toffoli stands watch over his 
specially designed automata machine. 

fram, for one, is sure that it will lead to 
greater understanding of what governs 
the evolution of complex structures. "The 
way to find those general laws is not to 
wallow around in generalities," he says, 
"but to look at a specific system and work 
out what it does in detail. Then you can try 
to figure out what the general laws are 
likely to look like." 

Finding those laws will not be easy. In 
its infinity of shapes and colors, the world 
of cellular automata obviously offers an al­
most unlimited number of systems to com­
pare and study. What remains to be seen is 
whether the glowing phosphor universes 
on Wolfram and Packard's computer 
screens reveal some ultimate truths about 
the real one. 0 
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Cellular automata: towards a paradigm for complexity 

Stephen Wolfram* 
The Institute for AdvlJnced Study, Princeton NJ 085,.0. 

January 1984 

Cellular automata are discussed as examples of systems in which many simple 
components act together to produce complex behaviour. They are analysed both 
as discrete dynamical systems, and as information processing systems. Several 
universal features are identified, and some general principles are suggested. 

It is common in nature to find systems whose overall behaviour is extremely complex, yet 
whose fundamental component parts are each very simple. The complexity is generated by the 
cooperative effect or many simple identical components. Much has been discovered about the 
nature or the components in physical and biological systems; little is known about the mechan­
isms by which these components act together to give the overall complexity observed. What is 
now needed is a general mathematical theory to describe the nature and generation of complexity. 

Cellular automata are examples of mathematical systems con,structed from many identical 
components, each simple, but together capable of complex behaviour. From their analysis, one 
may on the one hand develop specific models for particular systems, and on the other hand hope 
to abstract general principles applicable to a wide variety of complex systems. This article gives 
an outline of some recent results on cellular automata; more extensive accounts and references 
may be round in rers. 11-41. 

A one-dimensional cellular automaton consists or a line of si~es, with each site carrying a 
value 0 or 1 (or in general 0, ... ,k-l). The value IJj or a site at ppsition i is updated in discrete 
time steps according to an identical deterministic rule dependilJg on a neighbourhood or sites 
around it: 

4(1+1) = "'tlJ(l) 4(1) ••• 4(1) I 
• Y' ,-" .-,+1, , 'T' • (1) 

Even with k=2 and r=1 or 2, the overall behaviour of cellular automata constructed in this sim­
ple way can be extremely complex. 

Consider first the patterns generated by cellular automata evolving from simple "seeds" 

• Work supported in part by the U.S. Office of Naval Research under contract Dumber N00014-8~C-06S7. 
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consisting or a rew nonzero sites. Some local rules; give rise to simple behaviour; others produce 
complicated patterns. An extensive empirical study suggests that the patterns take on rour quali­
tative forms, illustrated in figure 1: 

1. Disappears with time. 

2. Evolves to a fixed finite size. 

3. Grows indefinitely at a fixed speed. 

4. Grows and contracts irregularly. 

Patterns of the third class are often found to be self-similar or scale invariant. Parts of such l;~\t,.. 
terns, when magnified, are indistinguishable from the whole. The patterns are characterized by a 
rractal dimension 151; the value log~od.59 is most commonly found. Many of the self-similar 
patterns seen in natural systems may in fact be generated by cellular automaton evolution. 

Figure 2 shows the evolution of cellular automata from initial states where each site is 
assigned each of its k possible values with an independen t equal probability. Self-organization is 
seen: ordered structure is generated from these disordered initial states, and in some cases consid­
erable complexity is evident. 

Different initial states with a particular cellular automaton rule yield patterns that differ in 
detail, but are similar in form and statistical properties. Different cellular automaton rules yield 
very different patterns. An empirical study nevertheless suggests that four qualitative classes may 
be identified, yielding four characteristic limiting forms: 

1. Spatially homogeneous state. 

2. Sequence of simple stable or periodic structures. 

3. Chaotic aperiodic behaviour. 

4. Complicated localized structures, some propagating. 

All cellular automata within each class, regardless of the details of their construction and evolu­
tion rules, exhibit qualitatively similar behaviour. Such universality should make general results 
on these classes applicable to a wide variety of systems modelled by cellular automata. 

Current mathematical models of natural systems are usually based on differential equations 
which describe the smooth variation of one parameter as a function of a few others. Cellular auto­
mata provide alternative and in some respects complementary models, describing the discrete evo­
lution or a large number or (identical) components. Models based on cellular automata are typi­
cally most appropriate in highly non-linear regimes or physical systems, and in chemical and bio­
logical systems where discrete thresholds occur. Cellular automata are particularly suitable as 
models when growth inhibition effects are important. 

As one example, cellular automata provide global models ror the growth of dendritic crystals 
(such as snowflakes) [61. Starting from a simple seed, sites with values representing the solid 
phase are aggregrated according to a two-dimensional rule that accounts for the inhibition or 
growth near newly-aggregrated sites, resulting in a rractal pattern or growth. Non-linear chemical 
reaction-diffusion systems give another example [71: a simple cellular automaton rule with growth 
inhibition captures the essential features of the usual partial differential equations, and reproduces 
the spatial patterns seen. Turbulent fluids may also potentially be modelled as cellular automata 
with local interactions between discrete vortices on lattice sites. 

It probabilistic noise is added to the time evolution rule (1), then cellular automata may be 
identified as generalized Ising models 18,91. Phase transitions may occur if ; retains some deter­
ministic components, or in more than one dimension. 

Cellular automata may serve as suitable models ror a wide variety or biological systems. In 
particular, they may suggest mechanisms ror biological pattern rormation. For example, the pat­
terns or pigmentation round on many mollusc shells bear a striking resemblance to patterns gen­
erated by class 2 and 3 cellular automata (ct. (10)), and cellular automaton models ror the growth 
or some pigmentation patterns have been constructed Ill). 
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Rather than describing specific applications or cellular automata, this article concentrates on 
general mathematical reatures or their behaviour. Two complementary approaches provide char­
acterizations or the rour classes or behaviour seen in figure 2 .. 

In the first approach, cellular automata are viewed as discrete dynamical systems (e.g. (121), 
or discrete idealizations or partial difl'erential equations. The set or possible (infinite) 
configurations or a cellular automaton rorms a Cantor set; cellular automaton evolution may then 
be viewed as a continuous mapping on this Cantor set. Quantities such as entropies, dimensions 
and Lyapunov exponents may then be considered ror cellular automata. 

In the second approach, cellular automata are instead considered as inrormation-processing 
systems (e.g. (131), or parallel-processing computers or simple construction. Inrormation 
represented by the initial configuration is processed by the evolution or the cellular automaton. 
The results or this inrormation processing may then be characterized in terms or the types or ror­
mal languages generated. (Notice that the mechanisms ror inrormation processing in natural sys­
tem appear to be much closer to those in cellular automata than in conventional serial-processing 
computers: cellular automata may thererore provide efl'icient media ror practical simulations or 
many natural systems.) 

Most cellular automaton rules have the important reature or irreversibility: several difl'erent 
configurations may evolve to a single configuration, and with time a contracting subset or all pos­
sible configurations appears. Starting rrom all possible initial configurations, the cellular automa­
ton evolution may generate only special "organized" configurations, and "selr-organization ,. may 
occur. 

For class 1 cellular automata, essentially all initial configurations evolve to a single final 
configuration, analogous to a limit point in a continuous dynamical system. Class 2 cellular auto­
mata evolve to limit sets containing essentially only periodic configurations, analogous to limit 
cycles. Class 3 cellular. automata yield chaotic aperiodic limit sets, containing analogues or chaotic 
or "strange" attractors. 

Entropies and dimensions give a generalized measure or the density or the configurations 
generated by cellular automaton evolution. The (set) dimension or limiting (topological) entropy 
ror a set or cellular automaton configuratiOnS is defined as (e.g. (12)) . 

d(2:) = lim Xl 10gtN(X) , (2) 
x-co 

where N(X) gives the number or distinct sequences or X site values that appear. For the set or 
possible initial configurations, d(2:)=1. For a limit set containing only a finite total number or 
configurations, d(2:)_O. For most class 3 cellular automata, d(2:) decreases with time, giving, 
0< d(2:)< I, and suggesting that a rractal subset or all possible configurations occurs. 

A dimension or limiting' entropy d(f) corresponding to the time series or values or a single 
site may be defined in analogy with (2). (The analogue or (2) ror a sufl'icient]y wide patch or sites 
yields a topologically-invariant entropy ror the cellular automaton mapping.) d(f)=O ror periodic 
sets or configurations. 

d(2:) and d(f) may be modified to account ror the probabilities or configurations by defining 

1 tx 
d~2:) = -lim X E pjlogtp) , 

x-co )=1 
(3) 

and its analogue, where Pj are probabilities ror possible length X sequences. These measure 
dimensions may be used to delineate the large time behaviour or the difl'erent classes or cellular 
automata: 

1. d~2:)=d~f)=O. 

2. d~2:»O, d~f)=O. 
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As discussed below, dimensions are usually undefined for class 4 cellular automata. 

Cellular automata may also be characterized by the stability or predictability of their 
behaviour under small perturbations in initial configurations. Figure 3 shows differences in pat­
terns generated by cellular automata resulting from a change in a single initial site value. Such 
perturbations have characteristic effects on the four classes of cellular automata: 

1. No change in final state. 

2. Changes only in a finite region. 

3. Changes over an ever-increasing region. 

4. Irregular changes. 

In class 1 and 2 cellular automata, "information" associated with site values in the initial state 
propagates only a finite distance; in class 3 cellular automata, it propagates an infinite distance at 
a fixed IIpeed, while in class 4 cellular automata, it propagates irregularly, but over an infinite 
range. The speed of information propagation is related to the Lyapunov exponent for the cellular 
automaton evolution, and measures the degree of sensitivity to initial conditions (d. [14]). It leads 
to different degrees of predictability for the outcome of cellular automaton evolution: 

1. Entirely predictable, independent or initial state. 

2. Local behaviour predictable -rrom -local initial state. 

3. Behaviour depends on an ever-increasing initial region. 

4. Behaviour effectively unpredictable. 

Information propagation is particularly simple ror the special class or additive cellular auto­
mata (whose local rule function ; is linear modulo 1:), in which patterns generated from arbitrary 
initial states may be obtained by superposition or patterns generated by evolution or simple initial 
states containing a single non-zero site. A rather complete algebraic analysis or such cellular 
automata may be given 115]. Most cellular automata are not additive; however, with special ini­
tial configurations it is orten possible ror them to behave just like additive rules. Thus for exam­
ple the evolution of an initial configuration consisting of a sequence of 00 and 01 digrams under 
one rule may. be identical to the evolution of the corresponding "blocked" configuration consisting 
of 0 and 1 under another rule. In this way, one rule may simulate another under a blocking 
transformation (analogous to a renormalization group transformation). Evolution from an arbi­
trary initial state may be attracted to (or repelled from) the special set of configurations for which 
suc.b a simulation occurs. Often several phases exist, corresponding to different blocking transfor­
mations: sometimes phase boundaries move at constant speed, and one phase rapidly takes over; 
in other cases, phase boundaries execute random walks, anni.hilating in pairs, and leading to a 
slow increase in the average domain size [16,17], as illustrated in figure 4. Many rules appear to 
follow attractive simulation paths to additive rules, which correspond to fixed points or blocking 
transformations. The behaviour of many rules at large times and on large spatial scales is thus 
determined by the behaviour of additive rules. 

Decreases with time in the spatial entropies and dimensions of eqns. (2) and (3) signal 
irreversibility in cellular automaton evolution. Some cellular automaton rules are however rever­
sible, so that each every configuration has a unique predecessor in the evolution, and the spatial 
entropy and dimension of eqns. (2) and (3) remain constant with time. Figure 5 shows some 
examples of the evolution of such rules, constructed by adding a term _6.<'-1) to eqn. (1) (18). 
Once again, there are analogues of the four classes of behaviour seen in figure 2, distinguished by 
the range and speed of information propagation. 

Conventional thermodynamics gives a general description of systems whose microscopic evo­
lution is reversible; it may therefore be applied to reversible cellular automata such as those 01 
figure 4. As usual, the "fine-grained" entropy for sets (ensembles) of configurations, computed as 
in eqn. (3) with perfect knowledge of each site value, remains constant in time. The "coarse­
grained" entropy for configurations is nevertheless almost always non-decreasing with time, as 
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required by the second law of thermodynamics. Coarse-graining emulates the imprecision of prac­
tical measurements, and may be implemented by applying almost any contractive mapping to the 
configurations (a few iterations of an irreversible cellular automaton rule suffice). For example, 
coarse-grained entropy might be computed by applying eqn. (3) to every fifth site value. In an 
ensemble with low coarse-grained entropy, the values of every firth site would be highly con­
strained, but arbitrary values for the intervening sites would be allowed. Then in the evolution of 
a class 3 or 4 cellular automaton the disorder of the intervening site values would "mix" with the 
firth site values, and the coarse-grained entropy would tend towards its maximum value. Signs of 
self-organization in such systems must be sought in temporal correlations, orten manifest in 
"Ouctuations" or metastable "pockets" of Qrder. 

While all fundamental physical laws appear to be reversible, macroscopic systems often 
behave irreversibly, and are appropriately" described by irreversible laws. Thus, for example, 
although the microscopic molecular dynamics of fluids is reversible, the relevant macroscopic velo­
city field obeys the irreversible Navier-Stokes equations. Conventional thermodynamics does not 
apply to such intrinsically irreversible systems: new general principles must be round. Thus ror 
cellular automata with irreversible evolution rules, coarse-grained entropy typically increases for a 
short time, but then decreases to follow the fine-grained entropy. Measures or the structure gen­
erated by self-organization in the large time limit are usually affected very little by coarse­
graining. 

Quantities such as entropy and dimension, suggested by information theory, give only rough 
characterizations of cellular automaton behaviour. Computation theory suggests more complete 
descriptions or self-organization in cellular automata (and other systems). Sets or cellular automa­
ton configurations may be viewed as rormal languages, consisting or sequences of symbols (site 
values) forming words according to definite grammatical rules (e.g. (191). The set or all possible 
initial configurations corresponds to a trivial formal language. The set or configurations obtained 
after any finite number of time steps are found to rorm a regular language. The words in a regular 
language correspond to the possible paths through a finite graph representing a finite state 
machine. It can be shown that a unique smallest finite graph reproduces any given regular 
language. Examples of such graphs are shown in figure 6. These graphs give complete 
specifications ror sets of cellular automaton configurations (ignoring probabilities). The number of 
nodes a in the smallest graph corresponding to a particular set or configurations may be defined 
as the "regular language complexity" of the set. It specifies the size of the minimal description of 
the set in terms of regular languages. Larger 8 correspond to more complicated sets. (Notice that 
the topological entropy of a set is given by the logarithm of the algebraic integer obtained as the 
largest root of the characteristic polynomial for the incidence matrix of the corresponding graph. 
The characteristic polynomials for the graphs in fig. 5 are 2->' (>'max=2), 1=->'+ 2>.2_>.3 
(>'~1.755) and -1+ >._>.2+ 2>.3-4>.4+ >.6+ 3>.8--5>.7+ 3>.8-3>.11+ 5>.10~>.11+ 4>.12_>.13 
(>'max~I.732), respectively.) 

It appears that the regular language complexity a ror sets generated by cellular automaton 
evolution is almost always non-decreasing with time. Increasing a signals increasing self­
organization. 8 may thus represent a fundamental property of self-organizing systems, comple­
mentary to entropy. It may in principle be extracted from experimental data. 

Cellular automata that exhibit only class 1 and 2 behaviour always appear to yields sets 
that correspond to regular languages in the large time limit. Class 3 and 4 behaviour typically 
gives rise, however, to a rapid increase or 8 with time, presumably leading to limiting" sets Dot 
described by regular languages. 

Formal languages are recognized or generated by idealized computers with a "central pro­
cessing unit" containing a fixed finite number of intemal states, together with a "memory". Four 
types of formal languages are conventionally identified, corresponding to four types or computer: 

Regular languages: DO memory required. 
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Context-free languages: memory arranged as a last-in 8rst-out stack. 

Context-sensitive languages: memory as large as input. word required. 

Unrestricted languages: arbitrarily large memory required (general Turing machine). 

Examples are known 01 ceDular automata whoee limiting sets correspond to context-Iree . 
languages (19]. Arguments can be given that the limit sets lor class 3 cellular automata typically 
lorm context-sensitive langaages, while those lor class -« cellular automata correspond to unres­
tricted languages. (Notice that while a minimal specification lor any regular language may always 
be lound, there is no finite procedure to obtain a minimal lorm lor more complicated lormal 
languages: no generalization 01 the regular language complexity 8 may thus be given.) 

While dynamical systems theory concepts sulice to define class I, 2 and 3 cellular automata, 
computation theory is apparently required lor class of cellular automata. Examples 01 the evolu­
tion 01 a typical class of cellular automaton are shown in figure 7. Varied and complicated 
behaviour, involving many dilerent time scales, is evident. Persistent structures are olten gen­
erated; the smallest lew ate illustrated in figure 8, and are seen to allow both storage and 
transmission 01 inlormation. It seems likely that the structures supported by this and other class 
of cellular automata rule may be combined to implement arbitrary inlormation processing opera­
tions. Class of cellular automata would then be capable 01 universal comp·utation: with particular 
initial states, their evolution could implement any finite algorithm. (Universal computation has 
been proved for a k=18, r=l rule [20], and lor two-dimensional ceDular automata such as the 
"Game of Life" [21].) A few p~rcent 01 cellular automaton rules with k>2 or r>I are found to 
exhibit class of behaviour: all these would then in fact be capable 01 arbitrarily complicated 
behaviour. This capability precludes a smooth infinite size limit for entropy or other quantities: as 
the size of cellular automaton considered increases, more and more complicated phenomena may 
appear. 

Cellular automaton evolution may be viewed as a computation. Elective prediction 01 the 
outcome 01 cellular automaton evolution requires a short-cut that allows a computation more 
efficient than the evolution itsel'. For class 1 and 2 ceDular automata, such short-cuts are clearly 
possible: simple computations suffice to predict their complete luture. The computational capa­
bilities 01 class 3 and of cellular automata may however be sufficiently great that in general they 
allow no short-cuts. The only elective way to determine their evolution Irom a given initial state 
would then be by explicit obse"ation or simulation: no finite lormulae for their general behaviour 
could be given. (If class -« ceDular automata are indeed capable of universal computation, then 
the variety of their possible behaviour would preclude general prediction, and make explidt obser­
vation or simulation necessary.) Their infinite time limiting behaviour could then not in general 
be determined by any finite computational process, and many of their limiting properties would 
be formally undecidable. Thus, for example, the "halting problem" 01 determining whether a 
class of cellular automaton with a given finite initial configuration ever evolves to the null 
configuration would be undecidable. An explici€ simulation could determine only whether halting 
occurred before some fixed time, and no whether it occurred after an arbitrarily long time. 

It seems likely that for class 4 cellular automata, the outcome 01 evolution from almost all 
initial configurations can be determined only by explicit simulation, while lor class 3 cellular auto­
mata this is the case lor only a smaD fraction of initial states. Nevertheless, this possibility sug­
gests that the occurrence 01 particular site value sequences in the infinite time limit is in general 
undecidable. The large time limit. or the entropy lor class 3 and of cellular automata would then in 
general be non-computable: bounds on it could be given, but there could be DO finite procedure to 
compute it to arbitrary precision. (This would be the case if the limit sets lor class 3 and 4 cellu­
lar automata lormed at least. ~ontext-sensitive languages.) 

While the occurrence 01 a particular length n site value sequence in the infinite time limit 
may be undecidable, its occurrence alter any finite time , can in principle be determined by con­
sidering aD length no=n+ 2rl initial sequences that could evolve to it. For increasing n or , this 
procedure would nevertheless involve exponentially-growing computational resources, so that it 
would rapidly become comput.ationally intractable. It seems likely t.hat. the identification 01 
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possible sequences generated by class 3 and 4 cellular automata is in general an NP-complete 
problem (e.g. 113]). It can thererore presumably not be solved in any time polynomial in n or " 
and essentially requires explicit simulation or all possibilities. 

Undecidability and intractability are common in problems or mathematics and computation-. 
They may well aMict all but the simplest cellular automata. One may speculate that they are 
widespread in natural systems, perhaps occurring almost whenever nonlinearity is present. No 
simple rormulae ror the behaviour or many natural systems could then be given; the consequences 
of their evolution could be round effectively only by direct simulation or observation. 

I am graterul to O. Martin, J. Milnor, N. Packard and many others ror discussions. The 
computer mathematics system SMP 122) was used in the course or this work. 
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Figure 1: Classes of patterns generated by the evolution of cellular automata from simple "seeds". 
Successive rows correspond to successive time steps in the cellular automaton evolution. Each site 
is updated at each time step according to eqn. (1) by cellular automaton rules that depend on the 
values of a neighbourhood of sites at the previous time step. Sites with values 0 and 1 are 
represented by white and black squares, respectively. Despite the simplicity of their construction, 
patterns of some complexity are seen to be generated. The rules shown exemplify the four classes 
of behaviour found. (The first three are .c=2, r =1 rules with rule numbers 111 128, 4 and 126, 
respectively ; the fourth is a k=2, r=2 rule with totalistic code 121 52.) In the third case, a selC­
similar pattern is formed . 
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Figure 2: Evolution of various cellular automata from disordered initial states. In many cases, 
ordered structure i! seen to be generated. The black and white pictures show examples of the 
four qualitative classes of behaviour found. (The rules shown are the same M in figure 1.) The 
colour pictures show rules with k=5 (five possible values for each site) and r=1 (nearest neigh­
bour rules). Site values ° through 4 are represented by white, red, green, blue and yellow squares, 
respectively. (The rules shown have totalistic codes 10175, 566780, 570090, 580020, 583330, 
672000, 5694390, 59123000.) 



Figure 3: Evolution 01 smaD initial perturbations in ceDular automata, as shown by the difference 
(modulo two) between patterns generated Irom two disordered initial states differing in the value 
01 a single site. The examples shown illustrate the lour classes oC behaviour Cound. Inlormation 
on changes in the initi.aI state almost always propagates only a finite distance in the first two 
classes, but may propagate an arbitrary distance in the third and Courth classes. 

Figure 4: Evolution oC mUltiple phases in cellular automata. Pairs oC sites are shown combined: 
00 is represented by white, 01 by red, 10 by green and 11 by blue. Alternate time steps are 
shown. Both rules simulate an additive rule (number ,90) under a blocking transformation. In the 
first rule (number 18), the simulation is attractive: starting Crom a disordered initial state, the 
domains grow with time. In the second rule (number 94), the simulation is repulsive: only evolu­
tion Crom a special initial state yields additive rule behaviour; a deCect is seen to grow, and attrac­
tive simulation oC the identity rule takes over. 
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Figure 5: Evolution ot some cellular automata with reversib~e rules. Each configuration is a 
unique runction ot the two previous configurations. (Rule numbers 4, 22, 90 and 126 are shown.) 
As initial conditions, each site in two successive configurations is chosen to have value 1 with pro­
bability 0.1. 

o 

Figure 6: Graphs representing the sets ot configurations generated in the first rew time steps ot 
evolution according to a typical class 3 cellular automaton rule (1'=2, r=1 rule number 126). 
Possible configurations correspond to possible paths through the graphs, beginning at the encircled 
node. At t =0, all possible configurations are allowed. With time, a contracting subset or 
configurations are generated. (After one time step, tor example, no configuration containing the 
sequence or site value 101 can appear.) At each time step, the complete set ot possible 
configurations rorms a regular tormal language: the graph gives a minimal complete specification 
or it. The number or nodes in the graph gives a measure or the complexity 8 ot the set, viewed as 
a regular language. As ror other class 3 cellular automata, the complexity ot the sets grows 
rapidly with time; tor t=3, 8=107, and t=4, a~4000. 
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Figure 7: Examples of the evolution of a typical class 4 cellular automaton from disordered initial 
states. This and other class 4 cellular automata are conjectured to be capable of arbitrary infor­
mation processing, or universal computation. The rule 'Shown has k=3, r=l, and takes the value 
of a site to be 1 if the sum of the values or the sites in the three-site neighbourhood is 2 or 6, to 
be 2 if the .sum is 3, and to be zero otherwise (totalistic code 792). 

Figure 8: Persistent structures generated in the evolution of the class 4 cellular automaton or 
6gure 7. The 6rst four structures shown have periods 1, 20, 16 and 12 respectively; the last four 
structures (and their reflections) propagate: the first haa period 32, the next three period 3, and 
the last period 6. These str.udures are some of the elements required to support universal compu­
tation. 
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CAM: A HIGH-PERFORMANCE CELLULAR-AUTOMATON MACHINE* 

Tommaso TOFFOLI 
MIT Laboratory for Computer Science, 545 Technology Sq ., Cambridge, MA 02139, USA 

CA M is a high-performance machine dedicated to the simulation of cellular automata and other distributed dynamical 
systems. Its speed is about one-thousand times greater than that of a general-purpose computer programmed to do the same 
task; in practical terms, this means that CAM can show the evolution of cellular automata on a color monitor with an update 
ra te, dynamic range, and spatial resolution comparable to those of a Super-8 movie, thus permitting intensive interactive 
experimentation. Machines of this kind can open up novel field s of research, and in this context it is important that results 
be easy to obtain, reproduce, and transmit. For these reasons, in designing CAM it was important to achieve functional 
simplicity, high flexibi lity, and moderate production cos t. We expect that many research groups will be able to own their own 
copy of the machine to do research with. 

1. Introduction 

A cellular automation is a stylized " universe." It 
consists of a uniform checkerboard, with each 
square or cell containing a few bits of data; time 
advances in discrete jumps; and the " laws of the 
universe" are represented by a single rule-say, a 
small look-up table - through which at each time­
step each cell computes its new state from that of 
its nearest neighbors. Given a suitable rule, such a 
simple underlying mechanism is sufficient to sup­
port a whole hierarchy of structures, phenomena, 
and properties. (See enclosed color plates, which 
are shared by [2] , [5] and [6] .) Cellular automata 
provide eminently usable models for many in­
vestigations in natural sciences, combinatorial 
mathematics, and computer science [4, 5]. 

However, the generality and flexibility of the 
cellular-automaton model are achieved at a cost. 
Instead of having relatively few lumped variables 
that interact in an arbitrarily assigned way, as in 
many ad hoc models of physical phenomena, a 

* This research was supported in part by the Defense Ad­
vanced Research Projects Agency and was monitored by the 
Office of Naval Research under Contracts Nos. 
NOOOI4-75-C-066 1 and NOOO I 4-83-K-O I 25, and in part by 
NSF Grant No. 82 14312- IST. 

cellular automaton uses very many variables (i.e. , 
one per cell) that interact only locally and uni­
formly. In order to synthesize structures of 
significant complexity it is necessary to use a large 
number of cells (typically tens of thousands, or 
even millions), and in order for these structures to 
interact with one another and evolve to a 
significant extent it is necessary to let the automa­
ton run for a large number of time steps (typically, 
many thousand) . Thus, satisfactory experimental 
runs with cellular automata require performing 
billions of individual cell-updating operations. 

When the simulation of a cellular automaton is 
carried out on a general-purpose sequential com­
puter, each of these cell-updating operations may 
require thirty-odd machine instructions, each one 
involving a few machine cycles (instruction fetch , 
instruction decode, memory read, etc.), for a total 
of perhaps one hundred machine cycles, i.e. , a time 
of ~ 100 J1S. When this is multiplied by a billion, 
one easily arrives at computer runs lasting ~ 105 s, 
or in the order of days! 

The most natural and effective way to implement 
cellular automata is of course as an array of 
identical VLSI chips each one containing, in turn, 
an array of thousands of identical cells. In this 
way, it is possible to arrive at arrays consisting of 

0167-2789/84/$03 .00 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 
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millions of cells; since direct communication be­
tween cells is strictly local, such arrays could be run 
at a clock rate of a few nanoseconds. Overall, the 
computation might proceed 106 to 109 times faster 
than on a general-purpose computer. However, no 
one really knows to what extent this enormous but 
quite specialized bit-crunching power can be 
effectively applied to real problems. One would 
have to experiment with different kinds of rules, 
different neighborhood structures, etc., as well as 
develop some theoretical background (cf. Toffoli 
[5]). And while in the long run the cost per cell of 
arrays of this kind could be quite low, blindly 
investing in fabricating one large array of a partic­
ular type without knowing whether that is what 
was actually wanted could be a very expensive 
proposition. On the other hand, if we tried to study 
the potential of a particular structure, in advance 
of fabricating it, by means of general-purpose 
computer simulation, the simulation would be so 
many orders of magnitude slower than the target 
as to fail to reveal the target's capabilities. 

The present approach is meant to break the 
above impasse. We still rely on sequential pro­
cessing (which, as we shall see below, has many 
advantages), but through special-purpose hard­
ware. A number of ingenious architectural solu­
tions make it possible to gain a speed factor of 
~ 1000 over simulation by general-purpose com­
puter, and this at a cost and circuit complexity 
comparable to those of inexpensive microcomputer 
systems. A further factor of ~ 100 can easily be 
achieved by applying a bit more of brute force 
(faster components, interleaving of the transition­
table memory, etc.), for an overall factor of ~ lOs. 
Thus, machines of the kind of CAM, while still 

• CAM was conceived and developed by Tommaso Toffoli in 
1981, initially as a personal project and on spare time and 
.resources. One version (CAM 1.2) was built in the context of 
ongoing MIT research, and partially supported by it. 

t Special-purpose pseudo-parallel processors based on tech­
niques similar to those used in CAM have been in use for some 
time [1, 3]. These machines are much more specialized than 
CAM, and essentially are "one-of-a-kind" research tools. 

•• A microcomputer with terminal, 32K of RAM, and 
floppy-disk storage is adequate for many applications. 

much slower than a truly parallel implementation, 
place a stepping stone across a gap that is perhaps 
too wide to bridge in one step, and can show us in 
a time of minutes what a parallel array would do 
in milliseconds and a more conventional simu­
lation would take weeks to achieve. 

2. Overview of CAM 

2.1. Generalities 

To sum up Section 1, it is desirable to have a tool 
capable of carrying out in an efficient way the 
immense computational task involved in explicitly 
tracing a cellular automaton's trajectory. In other 
words, we would like to be able· to choose a 
particular law, assign an initial state, say "Go!," 
and see the system evolve under our eyes. At times 
we may want to slow down the process or single­
step through it; examine in detail the current state 
and possibly save it for further analysis, or as a 
"seed" from which to restart; introduce per­
turbations; etc. As the computation proceeds, we 
may want to perform some statistical analysis on 
the sequence of states, or set up a trap which will 
alert us if a particular event has taken place. In 
other words, we would like to have a fast, flexible, 
easy-to-use cellular-automaton simulator. 

CAM is a "black box" containing a high­
performance parallel processor optimized toward 
the simulation of cellular automata and other 
distributed, discrete systems*. Here we shall sum­
marize the architecture and the functional charac­
teristics of this machinet. Its intented uses are 
discussed in other papers [5, 2, 6]. 

Access to the box is via two interface ports. The 
user port is typically connected to a generaI­
purpose computer** through which the user con­
trols the machine; the monitor port is connected to 
a standard RGB color monitor (or a black-and­
write CRT monitor), which displays the evolution 
of the cellular automaton. 

Under software control, the user can (a) read or 
white the memory planes describing the automa­
ton's state, (b) read or write the memory tables 

1 ., 
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containing a selection of transition functions and 
display functions, and (c) request the execution of 
a parallel step using one of the available transition 
functions, or (d) read or write miscellaneous regis­
ters which specify or reflect the machine's status. 

2.2. Space, time, and state variables 

The "universe" of CAM consists of 65,536 cells 
arranged in a two-dimensional array of size 
256 x 256. Each cell may contain up to 8 bits of 
data - corresponding to 256 distinct cell states. 
From the user's viewpoint, it will be convenient to 
visualize the array as a stack of 8 
transparencies - or memory planes - each con­
tributing a single bit to each cell. The array "wraps 
around" both vertically and horizontally , i.e., has 
the structure of a two-dimensional torus; this 
corresponds to periodic boundary conditions*. The 
whole array is scanned and displayed (and - if a 
step is requested - updated) 60 times per second, 
synchronously with the scanning of the CRT mon­
itor. 

2.3. Dynamics 

The dynamics of the system - i.e., the law ac­
cording to which at each step the whole array is 

• Other boundary conditions (e.g., absorbing reflecting, etc.) 
can be realized by tampering with the transition function in a 
nonlocal way; cf. below. 

t Note that the cell itself is counted among its neighbors. The 
CAM hardware provides a neighborhood of 3 x 3, i.e., the 
center cell itself, its 4 nearest neighbors, and its 4 second-nearest 
neighbors. Larger neighborhoods can be synthesized as expla­
ined in section 5.1 . 

• - All of the above extensions can be realized in a variety of 
ways, and the user will learn to appreciate the convenience of 
such an arrangement. To give but one example, distinguished 
places acting as boundaries, sources, or sinks can be defined by 
decoding the address of the given places and feeding the result 
as a nonlocal argument to the transition function. Alternatively, 
one can distinguish between places by loading one memory 
plane with a suitable spatial pattern (which will be kept fixed 
by the transition function); this pattern will be "sensed" by the 
other planes in a local way - that is, through the neighborhood 
of each cell - and thus will allow them to change their behavior 
from place to place. 

updated by replacing the current value of each cell 
with a new value - is specified by a transition 
junction. This can be hardwired , but is usually 
encoded in RAM tables. Typically, one supplies as 
arguments to the transition function the current 
values of the neighbors of the cell to be updatedt. 
This yields a law that is local (what happens at any 
point depends only on what there is in the vicinity 
of that point) and uniform (the law is the same at 
each point). However, more general dynamical 
systems may be obtained by introducing other 
classes of arguments (cf. section 5). In particular, 
the hardware of CAM supplies a distinct address 
for each cell , so that one can construct laws that 
are space-dependent ; and optionally supplies ran­
dom values , so that the law can be made non­
deterministic. Finally, it is possible to use time itself 
as an argument in order to realize time-dependent 

systems.** 

2.4. Display 

In CAM , one can actually watch, in real time, 
the evolution of the system under study. To en­
hance observations, instead of using a one-to-one 
mapping between the state of a cell and the color 
of the corresponding pixel on the CRT, one can 
introduce a suitable display junction. Much as the 
transition function, the display function may use 
both local arguments (extracted from the state of 
the neighborhood) and nonlocal ones. Thus one 
can "filter out" interesting dynamical patterns, 
highlight selected areas, and even caption specific 
events. 

2.5 . Functional parallelism vs. sequential imple­

mentation 

In a truly parallel implementation of cellular 
automata, all cells are updated at the same time. 
For this to be possible, each cell must have inde­
pendent access to the transition-function table, or 
have its own private copy of it. In practice, the 
hardware that accesses or embodies the transition 
function may be enormously larger than that 
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which realizes a cell 's state variables (cf. section 
3.1). Thus, for a general-purpose system such as 
CAM , it is much more convenient to have only one 
copy of the transition-function hardware, and 
time-share it between cells. Cell updating is thus 
sequential. This approach raises a number of 
problems - the main one being that, as soon as one 
cell is updated, the next cell will immediately see 
the new state (rather than the old one it needs in 
order to compute its own new state) . In CAM, this 
and similar problems are solved by providing cells 

with short-term memory, achieved through a pipe­
lined architecture. In addition, cells near the edges 
of the array are also given look-ahead capabilities, 
in order to realize the correct wrap-around *. 

All of the above artifices are totally transparent 
to the user (and for this reason will not be further 
di scussed here). In conclusion, from a functional 
viewpoint, CAM behaves in all respects as a truly 
parallel system, and there is an exact isomorphism 
between the abstract " target" cellular automaton 
and its electronic realization. 

Of course, time-sharing of the transition func­
tion requires very fast hardware. At 60 frames/s, 
the time-window allotted to each cell is approxi­
mately 160 ns. CAM's pipelined structure takes 

care of all the bookkeeping involved in loca t.ing a 
cell 's neighbors, reading their values, buffering and 
eventually writing the cell's new value, managing 
the display, etc., so that the full width for the 
window is available to the circuitry that evaluates 
the transition function . 

• This is achieved by a clever backtracking scheme that in 
effect instantly " flushes" the pipelines. 

t Each of the eight planes supplies nine neighbors; sixteen 
more lines specify a cell 's address; a few more lines may come 
from the random-number generators; and finally , additional 
lines may be used for specifying time-dependent behavior. 

•• One bit for each plane, to specify a cell 's new state, plus 
approximately as many bits to specify the value of the corre­
sponding pixel. 

t Note that look-up tables are most effectively utili zed when 
there contents is nearly random, and certainly few users would 
want to deliberately and independently assign millions of bits 
in o rder to specify the dynamics of a system. 
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Fig. I. CAM 's basic computa tional loop (solid lines), with 
nonlocal arguments and display function (dashed lines) . 

3. Architectural notes 

3.1. " Hard" us. "soft" programming 

In CAM, the basic computational loop has the 
form of fi g. 1. In principle, the functions in the 

above figure could be realized entirely by look-up 
tables; in this way, the behavior of the dynamical 

system under study could all be programmed in a 
" soft" way by merely downloading the tables with 
appropriate entries. 

In practice, the totally soft approach is not 
viable. The number of binary lines that one might 
want to use - at one time or another - as arguments 
to the tables approaches one-hundredt, and the 
number of result bits (the width of a table entry) 
that one might want to use at one time or another 
is close to sixteen** . Thus, to achieve full pro­
gramming generality in this context one would 
need a table of perhaps 16 x 10100 bits, which is 
clearly out of the question. On the other hand, 
such a large table would mostly do trivial routing 
of signals , which can be achieved with much less 
lavish means (cf. last footnote of this section). 

In CAM, practical considerations (cost, bulk, 
power requirements, and timing) suggest a range of 
21°-2 16 bytes as the maximum amount of fast RAM 
memory to be devoted to look-up tablest. 

In order best to use this resource, observe that 
only some of the lines available as potential func­
tion arguments -- as well as only some of the poten­
tial result lines - are in practice used at anyone 
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time. Moreover, especially when very many argu­
ments are actually used (e.g., many states per cell 
and many neighbors), transition functions of prac­
tical interest tend to display some regularity; be­
cause of this, with some simple preprocessing of 
the arguments or postprocessing of the results one 
can often replace an extremely large table by one 
of manageable size*. 

For the above reasons, in CAM the tables' input 
and output lines are not permanently wired to the 
rest of the circuit (planes, display, etc.), but are 
made accessible to the user, through jumpers on 
the backplane. While this arrangement gives CAM 
enormous flexibility, without further support it 
might entail frequent manual interventions on the 
user's part. Yet, it is desirable to run long un­
attended series of experiments or complex live 
demos totally under software control. This prob­
lem is solved by providing a number of tables, 
rather than a single one. Each table can be wired 

* This solution can actually take many different forms: one 
can cascade two or more tables , use a hybrid of tables and 
hardwired circuitry, or even " microprogram" a complex func­
tions as a sequence of several cellular-automaton steps (cf. 
section 5.3) . 

t Of course, another solution is to replace jumpers by a 
software-controlled "electronic switchboard" having access to 
all signal points of potential interest. The natural place for such 
a router ca rd, which the user should provide himself, is in a slot 
between the planes cards and the tables cards (cf. section 4.). 

, , 

independently of the others, and thus different 
combinations of sources and destination lines are 
available at the same time. Which combination (or 
mix of combinations) is actually used for a given 
step - in other words, which of the many available 
rules should be used at any moment - is deter­
mined by a channel parameter which accompanies 
the request to execute a step. An additional param­
eter, called the phase, may be supplied alongside 
with the channel, to further characterize the 
selected rule. 

Channels and phases (further discussed in the 
following section) provide an elegant compromise 
to the "hard-vs-soft programming" dilemmat. 

3.2. Channel and phase 

In the previous section , we discussed the loop of 
fig. 1 as viewed from the functions' side. Here, we 
shall discuss it from the planes' side. 

During execution of a step, the memory planes 
(which, stacked together, make up the state of the 
cellular automaton) are scanned concurrently, cell 
by cell , and the contents of each plane is cycled 
through a complex pipeline arrangement whose 
details need not concern us. All we need know is 
that at one point in the pipeline there is an 
intentional gap, which must be filled by the user in 
order to close the loop. This gap has the form of 

I FUNCTIONS: 
I (tables, :-..:--]---j 
I circuits, etc.) I --~-1 I 
I 

from all 1 ...... ~ --, Chan. 
I I --iselecto~ panes ....... j . 

I toall I .......... 10fSI 

1 
I ~--t 1 panes I 

1_7':.- ....J L_~_--.J ., r 

Neighbors New state 

"l I' I I J 1 
- - --------+1 :..--P-la-n-e-'s-p-ip-e-l-in-e ............ 1 ,'------.---' 

I I 
I I 

Phase 
parameter 

I , 
Channel 

parameter 

Fig. 2. CAM 's pipeline (solid lines), with gap to be filled by the transition function. In the dashed portion, the channel selector 
connects the pipeline input to anyone of 8 different sources, and the phase parameter can be used to modify the behavior of such 
sources. Any interactions between pipelines takes place in the "fuctions" box, where all of the random wiring is located . 
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fig. 2: on the pipeline there are nine output taps, 
which supply the states of the cell's nine neighbors, 
and one input tap, which is to receive the cell's new 
state·. 

It is across the gap - and only there - that the 
pipelines may interact with one other and with the 
"external" world (nonlocal arguments, time­
dependent parameters, etc.), since the user may 
inject anything he wishes in the input tap. 

In CAM, the pipeline's input tap is preceded by 
an 8-line data selector (fig. 2) controlled by the 
channel parameter. In this way, what is fed into the 
input tap can be made to come, under software 
control, from anyone of eight predefined sources 
(any combination of wires, tables, and discrete 
circuits). The same channel parameter applies to all 
planes, so that the selections made by the planes 
are coordinated. In addition, the phase parameter 
is made available to those sources, to be decoded 
at will. Briefly, at each step the channel selects a 
source for each plane and the phase parametrizes 
it .. 

We shall give a specific example of the above 
ideas. In another paper in these proceedings [2], 
Margolus describes a very clever cellular-

·Since we are now dealing with just one plane, by "state" of 
a cell we mean the one-bit state component of that cell in that 
particular plane. 
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automaton realization of the billiard-ball model of 
computation. Margolus's rule uses as a neigh­
borhood only a two-by-two square contained in 
the standard nine-cell neighborhood; however, 
which of the four such squares is used by a given 
cell at a given time depends on the parity of time 
and on the parity of the horizontal and vertical 
coordinates. Thus the rule is space- and time­
dependent (though in a very simple way), and 
requires a look-up table with 12 address lines (9 for 
the neighbors, 2 for horizontal and vertical parity, 
and 1 for time parity) or 212( = 4096) bits. Other 
interesting rules can be defined on this "Margolus 
neighborhood;" in order to have several of these 
rules available in the machine at the same time (for 
instance, for comparing their behavior without 
having to reload the rule every time), as many 
4096-bit RAM tables would be required. But the 
extraction of the four relevant neighbors out of the 
nine available can be done once and for all by a 
simple circuit or a look-up table (fig. 3 uses a 
combination of both), thus reducing the size of the 
table needed for each rule from 4096 bits to only 
24( = 16) bits! The wiring for this situation is 
illustrated in fig. 3. Note that the bit indicating 
time parity is supplied through the phase parame­
ter, and thus by the software, rather than by a 
hardware counter. This is desirable since in Mar­
golus's rule a reversal of the time phase entails 
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Fig. 3. Portion of CAM wired to run several rules based on the Margolus neighborhood. Neighbor "preselection" is done by a 
combination of hardware and table look-up, so as to permit use of smaller tables for the rules themselves. The phase bit determines 
whether a rule should execute forward or time-revc!rsed. 
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running the rule backwards in time; thus the 
billiard-ball computation can be made to go for­
ward or backward in time under program control. 
In this example, then, the channel selects one of 
several rules sharing the Margolus neighborhood, 
and the phase determines the direction of time. 

3.3. Data structures* 

CAM's architecture provides logical space for 
the following data objects: 

REGISTERS: 
8 system registers 

8 user registers 
AREAS: 
8 cellular-automaton planes 
8 function tables 

System and user registers are all one byte widet. 
The planes consist of 8K bytes each 
(256 x 256 = 64K bits = 3K bytes), and the tables 
may be of arbitrary size (typically from 1 K to 8K 
bytes). 

User access to the objects is through the user · 
port, whose lines are directly buffered into an 
asynchronous bus structured as follows : 

2 lines for selecting among the four major 
groups of objects (system registers, user registers, 
planes, and tables) , 

3 lines for selecting one of the eight objects in 
each class, 

* In this a rchitectural overview, as a rule we state a definite 
base value for the maximum number or size of certain resources, 
such as the number of planes, the number of sources selectable 
by the channel parameter, the range of the a reas cursor, etc. 
Only this base value is fully supported by CAM 's hardware (in 
terms of fan-cut capabilities, number of address lines , slots in 
the card cage, power-supply requirements, etc.) . However, the 
sys tGm's architecture allows unlimited expansion beyond the 
base value for most of these parameters, and explicit " hooks" 
are provided for making the expansion as straightforward as 
possible. 

t System registers are either actua lly used in the current 
version (e.g., stpe register, cursor low byte, cursor high byte, 
utility latch register, etc.) or their address space is reserved for 
future versions of CAM. On the other hand, the imple­
ment ation and use of user registers is left to the discretion of 
the user. 

I line for data direction (read/write), 
8 bidirectional data lines , and 
I data strobe line. 

The final selection of an individual byte within an 
area (plane or a table) is accomplished by the 
cursor, an internal 16-bit counter of which 14 bits 
are bussed. The cursor may be set by the user to 
point at any place within an area, and normally 
autoincrements after each strobe pulse (the archi­
tecture reserves a cursor control user register for 
more sophisticated uses of the cursor). 

3.4. Scanning and stepping 

CAM continually generates sync signals for the 
display in a cycle called frame that last 1/60 s. 

Normally, during each frame CAM also scans 

the whole array (addressing bytes through the 
scanner, an internal 13-bit counter) and displays its 
contents; if a step is executed during that scan (see 
below), then the old state of the planes is replaced 
by the new state, otherwise it remains unchanged . 
On the other hand, if at the beginning of the frame 
the bus is found in a state which requests 
input/output from any plane, then scanning is 
suppressed for that frame and access to the array 
is granted to the bus, which will address it through 
the cursor; in this case the frame is blanked. 

In order to schedule a step, the user writes to 
system register 0 (the step register) a byte contain­
ing the desired channel and phase. The step will be 
executed on the next available scan frame. 

Two output lines (" step pending" and " scan in 
progress") in the user port supply all syn­
chronization information needed by the driving 
software. 

4. Hardware and software 

The following is a description of the hardware 
and software that currently comprise the CAM 
package. 
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4.1. Hardware 

The hardware of CAM consists of a set of 
4.5" x 6.5" cards in a lO-s10t card cage with power 
supply. Half of the backplane is occupied by the 
system bus; the other half consists of discrete input 
or output pins which can be wire-wrapped or 
jumpered by the user (cf. section 3.1) to custom­
configure the system. 

In its basic configuration, CAM is "populated" 
with just four cards, namely: 

(a) The interface card, containing the user port, 
the monitor port, system registers, the cursor coun­
ter, and other interfacing logic. A simple random­
number generator is usually plugged into this card. 

(b) Tne scanner card, containing all the timing, 
control, and address circuitry involved in parsing 
a frame, scanning the planes, and operating the 
pipelines. 

(c) One planes card, containing two planes with 
the associated memory, pipelines, buffers, and mul­
tiplexers. 

(d) One tables card, containing two separately 
addressable 4 x 1024-bit tables, with their access 
circuitry. 

Additional planes and tables cards may be ad­
ded to this basic configuration, in order to have 
more states per cell and a wider choice of rules. 

CAM's backplane has been structured keeping 
in mind that users may want to plug in additional 
custom-designed cards of their own (e.g., more 
sophisticated random-number generators, hard­
wired or PROM functions, prototyping boards 
with random logic, etc.). 

4.2. Interfacing 

The monitor port supplies 75-ohm signals for 
Red, Blue, Green, Sync, and Black-and-White 

* This package was created by Norman Margolus, who also 
contributed in a substantial way to the functional definition of 
CAM and developed a number of origina applications. Inter­
esting application and much user feedback were provided also 
by Gerard Vichniac. 

Composite. Composite Sync is also superposed on 
Red, Blue, and Green, for convenience, but may be 
disabled. Separate horizontal and vertical syncs are 
available on the backplane. 

The user port can be driven by a standard PIA 
(parallel interface adaptor chip) such as the 
MC6821, or by any parallel port providing 16 bi­
directional lines. In particular, the required lines 
from an internal PIA are available at the jacks of 
an AT ARI 400/800 personal computer. 

4.3. Software 

The low-level software required to drive CAM is 
extremely simple (and, in fact, CAM can be easily 
hand-tested by driving the user port with a few 
switches). Each atomic operation involves address­
ing a particular data object (cf. section 3.3), and 
transferring a byte to or from it. Owing to the 
autoincrement feature of CAM's cursor and the 
autostrobe feature of the PIA, an entire plane or 
table can be downloaded by repeatedly writing to 
the same PIA data register. And once planes and 
tables are initialized, the cellular automaton is run 
by selecting the step register and repeatedly writing 
the desired channel-and-phase byte to it. 

CAM's hardware is accompanied by an installa­
tion guide describing in machine-independent form 
the basic control subroutines. 

At the moment, we are controlling CAM by 
means of a sophisticated software package which 
runsd on the AT ARI 400/800 personal computer*. 
This package assists the user in creating, filing, and 
loading function tables and plane configurations, 
and in running the cellular automaton (single-step, 
variable speed, step through a cycle of different 
funtions, etc.). A window system allows the user to 
view with magnification on the ATARI's screen a 
selected portion of the automaton, and to manipu­
late this area with ease. 

We hope that, owing to the fact that CAM 
constitutes a de facto standard, its users wi11 be able 
to share data, applications, and software devel­
oped for other host computers. 
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5. Extensions 

Though the range of applications that can be 
explored with CAM "as given" is enormous, some 
applications may demand features (such as array 
size and wrap-around, number of neighbors, etc.) 
different from those hardwired in CAM. Here, we 
shall briefly indicate how one cay synthesize a 
much wider range of features. In certain cases this 
will require additional software or hardware, and 
possibly entai l a speed penalty; what is important 
is that one can at least "preview" the behavior of 
very peculiar systems without having to build from 
scratch a special-purpose machine. 

5.1 . Neighbors 

Certain transition functions may require a 
neighborhood template in which one or more 
neighbors lie outside of the 3 x 3 "window" pro­
vided by the CAM hardware. The extra neighbors 
can be made to appear through the 3 x 3 window 
by putting on auxiliary planes suitably shifted 
copies of the original planes. Thus, one would run 
a two-phase cycle: one phase performs trivial shift 
steps from the original planes to the auxiliary ones, 
and the other performs the desired transition­
function step . Note that a built-in hardware fea­
ture allows the user to blank out intermediate 
results* . 

5.2 . Array size 

The evolution of an arbitrarily large array can be 
simulated on CAM with little overhead. The whole 
array is stored in the host computer's memory, and 
is partitioned into blocks of size somewhat smaller 
that 256 x 256. In turn each block is loaded into 
the CAM array, surrounded by an edge comin'g 
from the adjacent blocks, and run for a few steps, 

• At 60 frames per second, a display that comes on every 
other frame (or even every third or fourth frame) still gives a 
reasonably continuous view of a system's dynamics. 

until the edges (which are cut off from the rest of 
the array) are fully degraded and only the block 
itself contains correct information. The host's 
memory is then updated accordingly, and the 
process is repeated. 

If the target array's size is not too large a 
multiple of 256 x 256, another technique is possi­
ble which does not impose any speed penalty. 
Intuitively, several tori (i.e., wrapped-around 
planes) be cut open, unfolded, and then "sewn 
together" edge-to-edge so as to make up a larger 
torus . This can be done with some external cir­
cuitry which decodes the address of the edges and 
makes one plane look for edge neighbors for 
another plane. 

5.3. Boundary conditions, sources and sinks, "mira­
cles" 

As mentioned above and in section 2.3, the 
wrap-around of the planes can be disabled and 
replaced by other boundary conditions by deco­
ding the address of the edges, or by means of 
auxiliary planes loaded with suitable edge patterns. 

These techniques can also be used whenever one 
wants to force a part of the system to obey laws 
that are not an implicit consequence of the given 
local rule. For instance, the cellular automaton's 
state-variables may be thought of as representing 
the relatively few mechanical modes (degrees of 
freedom) of a system; then the average effect of a 
much larger number of thermal modes can be 
simulated by couplig the system with thermal 
sources (e.g., a random-number generator) and 
sinks (e.g., an absorbing wall) . 

Finally, the evolution of a system can be steered 
towards rare and more interesting events by "mira­
cles" performed by the user. Specific objects can be 
moved, created, or zapped out of existence; a 
sequence of events can be traced in slow motion, 
analyzed, and modified, much as in tracing a 
computer program; and - if the transition function 
is invertible - the direction of time itself can be 
reversed. 
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5.4. Externally-driven parallel processing 

Certai n parallel processing applications, while 
still substantially adhering to the locality and uni­
formity of the cellular-automaton paradigm, 
strongly depart from time-independence. Rather, 
the system's dynamics is "driven" by an external 
sequencer through a fixed or variable sequence of 
different dynamical rules. Typical examples are 
certain forms of image processing (e.g., chromo­
some identification and counting) or the simulation 
of microcoded VLSI arrays. In this case, instead of 
preloading a large number of look-up tables with 
all the possible rules prescribed by the sequence, it 
may be more convenient to dynamically download 
tables as they are needed. This can always be done 
between steps, at the cost of slowing down the 
system. However, in CAM tables can also be 
written "on-the-fly" , that is, during execution of a 
step. Thus, if one wants to retain maximum speed, 
one can use two sets of tables to be used in 
alternation; at any moment, the one which is not 
in use can be loaded concurrently with the ongoing 
step. 

6. Conclusions 

CAM is a powerful tool for experiments in 
parallel 'dynamics. It can be configured for a 

number of practical applications involving parallel 
computation and image processing. Its great 
flexibility and moderate cost make it likely that it 
will be used by a large number of groups, and that 
there will be a lively exchange of applications 
between groups. 

The real-time graphic display and the essentially 
interactive nature of the machine are invaluable for 
research purposes, and also provide demos and 
" living slides" having great visual impact and 
didactic potential. 
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1. Introduction 
Cellular automata are mathematical models for systems in which many simple components 

act together to produce complicated patterns of behaviour. One-dimensional cellular automata 
have now been investigated in several ways ((1], and references therein). This paper presents an 
exploratory study of two-dimensional cellular automata*. The extension to two dimensions is 
significant for comparisons with many experimental results on pattern formation in physical sys­
tems. Immediate applications include dendritic crystal growth (6], reaction-difusion systems, and 
turbulent Bow patterns. (The Navier-Stokes equations for Buid Bow appear to admit turbulent 
solutions only in two or more dimensions.) 

A cellular automaton consists of a regular lattice of sites. Each site takes on k possible 
values, and is updated in discrete time steps according to a rule ; that depends on the values of 
sites in some neighbourhood around it. The value IIi of a site at position i in a one-dimensional 
cellular automata with a rule that oniy nearest neighbours thus evolves according to 

lI;(f+l) == ;(lIiW ,1I;<t),lIi~) • (1.1) 

There are several possible lattices and neighbourhood structures for two-dimensional cellular auto­
mata. This paper considers primarily square and hexagonal lattices, with the three neighbourhood 
structures illustrated in figure 1.1. A five-neighbour square cellular automaton then evolves in 
analogy with eqn. (1.1) according to 

1I·(f+1) == .J.(II·(t) II (fl. 1I·(+tl. II (f) 1 II (V ) (1.2) 
1 .J ¥' I.J' I.J T'&' 1 I.J' I.J - , I-..,J • 

General cellular automaton rules may be labelled as indicated in figure 1.1. Here we usually con­
sider the special class of totalistic rules, in which the value of a site depends only on the sum of 
the values in the neighbourhood: 

1I·(H1) == I [II (f)+11 (1)+1 +1I(+tl +11 (I) 1 +11(11) ) (1.3) 1 .J I ,J I ,J I I,J 1 .J - 1- ,J 

These rules are conveniently specified by a code (7) 

C == EI (n )k" (1.4) 
II 

We also consider outer totalistic rules, in which the value of a site depends separately on the sum 
of the values of sites in a neighbourhood, and on the previous value of the site itself: 

1I1!~+l) == i (1I1!~),lIi!~~l +lIi~l.J+lli!~~1 +lIi~l~J) 
Such rules are specified by a code 

C == Ei [II ,n )k b +1I • 

II 

(1.5) 

(1.6) 

This paper considers two-dimensional cellular automata with two possible values at each site, 
Ie ==2. Table 1 gives the number of possible rules of various kinds ror such cellular automata. A 
notorious example of an outer totalistic nine-neighbour square cellular automaton is the "Game of 
LiCe" (8], with a rule specified by code 0==224. 

Despite the simplicity of their construction, cellular automata are found to be capable of 
very complicated behaviour. Direct mathematical analysis is in general of little utility in elucidat­
ing their properties. One must at first resort to empirical means. This paper is a phenomenologi­
cal study of typical two-dimensional cellular automata. Its approach is largely experimental in 
character: cellular automaton rules are selected and their evolution from various initial states is 
traced by explicit simulation**. The emphasis is on generic properties. Typical initial states are 

• Some aspects of two-dimensional cellular automata were discussed in 12,3), and mentioned in 14). Additive 
two-dimensional cellular automata were considered in Is) . 
•• Two computer systems were used. The first was the special-purpose pipelined TTL machine built by the 
M.I.T. Digital IDlormation Mechanics group 191. This machine updates all sites on a 256 X 256 square cellular 
automaton lattice 60 times per second. It is controlled by a microcomputer, with software written in FORTH. It 
allow8 for five- and nine-neighbour rules, with up to four elective values for each site. The second system was 
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chosen. Except for some restricted kinds of rules, table 1 shows that the number of possible cellu­
lar automaton rules is far too great for each to be investigated explicitly. For the most part one 
must resort to random sampling, with the expectation that the rules so selected are typical. The 
phenomena identified by this. experimental approach may then be investigated in detail using 
analytical approximations, and by conventional mathematical means. Generic properties are 
significant because they are independent of precise details of cellular automaton construction, and 
may be expected to be universal to a wide class of systems, including those that occur in nature. 

Empirical studies strongly suggest that the qualitative properties of one-dimensional cellular 
automata are largely independent of such features of their construction as the number of possible 
values for each site, and the size of the neighbourhood. Four qualitative classes of behaviour have 
been identified in one-dimensional cellular automata [7). Starting from typical initial 
configurations, class 1 cellular automata evolve to homogeneous final states. Class 2 cellular auto­
mata yield separated periodic structures. Class 3 cellular automata exhibit chaotic behaviour, 
and yield aperiodic patterns. Small changes in initial states usually lead to linearly-increasing 
regions of change. Class 4 cellular automata exhibit complicated localized and propagating struc­
tures. Cellular automata may be considered as information-processing systems, their evolution 
performing some computation on the sequence of site values given as the initial state. It is con­
jectured that class 4 cellular automata are generically capable of universal computation, so that 
they can implement arbitrary information-processing procedures. 

Dynamical systems theory methods may be used to investigate the global properties of cellu­
lar automata. One considers the set of configurations generated after some time from any possible 
initial configuration. Most cellular automaton mappings are irreversible (and not surjective), so 
that the set of configurations generated contracts with time. Class 1 cellular automata evolve 
from almost all initial states to a unique final state, analogous to a fixed point. Class 2 celluhir 
automata evolve to collections of periodic structures, analogous to limit cycles. The con traction 
of the set of configurations generated by a cellular automaton is re8ected in a decrease in its 
entropy or dimension. Starting from all possible initial configurations (corresponding to a set 
defined to have dimension one), class 3 cellular automata yield sets of configurations with smaller, 
but positive, dimensions. These sets are directly analogous to the chaotic (or "strange") at tractors 
found in some continuous dynamical systems (e.g. [10)). 

Entropy or dimension gives only a coarse characterization of sets of cellular automaton 
configurations. Formal language theory (e.g. [111) provides a more complete and detailed charac­
terization [12\. Configurations may be considered as words in a formal language; sets of 
configurations are specified by the grammatical rules of the language. The set of configurations 
generated after any finite number of time steps in the evolution of a one-dimensional cellular 
automaton can be shown to form a regular language: the possible configurations thus correspond 
to possible paths through a finite graph. For most class 3 and 4 cellular automata, the complexity 
of this graph grows rapidly with time, so that the limit set is presumably not a regular language 
(cr. [13)). 

This paper reports evidence that the global properties of two-dimensional cellular automata 
are very similar to those one-dimensional cellular automata. Many of the local phenomena found 
in two-dimensional cellular automata also have analogues in one dimension. However, there are a 
variety of phenomena that depend on the geometry of the two-dimensional lattice. Many of these 
phenomena involve complicated boundaries and interfaces, which have no direct analogue in one 
dimension. 

Section 2 discusses the evolution of two-dimensional cellular automata from simple "seeds", 
consisting of a few nonzero initial sites. Just as in one dimension, some cellular automata give 

a software program running on the Ridge 32 computer. The kernel was written in assembly language; the top­
level interlace in C. (Requests for copies of this program should be directed to the authors.) A 128 X 128 cellular 
automaton lattice is typically updated about 7 times per second. One-dimensional cellular automaton simula­
tion8 were carried out with our CA cellular automaton simulation package, written in the C programming 
language, usually running on a Sun Workstation. 
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regular and self-siIJ.tilar patterns; others yield complicated and apparently random patterns. A new 
feature in two dimensions is the generation of patterns with dendritic boundaries, much as 
observed in many natural systems. Most two-dimensional patterns generated by cellular automa­
ton growth have a poly topic boundary that reflects the structure of the neighbourhood in the cel­
lular automaton rule (d. [141). Some rules, however, yield slowly-growing patterns that tend to a 
circular shape independent of the underlying cellular automaton lattice. 

Section 3 considers evolution from typical disordered initial states. Some cellular automata 
evolve to stationary structures analogous to crystalline forms. The boundaries between domains of 
different phases may behave as if they carry a surface tension: positive surface tensions lead to 
large smooth-walled domains; negative surface tensions give rise to labyrinthine structures with 
highly-convoluted walls. Other cellular automata yield chaotic, class 3, behaviour. Small changes 
in their initial configurations lead to linearly-increasing regions of change, usually circular or at 
least rounded. 

Section 4 discusses some quantitative characterizations of the global properties of two­
dimensional cellular automata. Many definitions are carried through directly from one dimension, 
but some results are rather different. In particular, the sets generated after a finite number of time 
steps of cellular automaton evolution may no longer be described by regular languages, but are in 
fact in general non-recursive. As a consequence, several global properties that are decidable for 
one-dimensional cellular automata become undecidable in two dimensions (d. (151). 
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2. EvolutloD from simple seeds 

This section discusses patterns formed by the evolution of cellular automata from simple 
seeds. The seeds consist of single nonzero sites, or small regions containing a few nonzero sites, in 
a background of zero sites. The growth of cellular automata from such initial conditions should 
provide models for a variety of physical and other phenomena. One example is crystal growth (61. 
The cellular automaton lattice follows the crystal lattice, with nonzero sites representing the pres­
ence of atoms or regions of the crystal. DiJferent cellular automaton rules are found to yield both 
epitaxial (regular) and dendritic (snow8ake-like) crystal structures. In other systems the seed may 
correspond to a small initial disturbance, which grows with time to produce a complicated struc­
ture. Such a phenomenon presumably occur when 8uid turbulence develops downstream from a~ 
obstruction or orifice*. 

Figure 2.1 shows some typical examples of patterns generated by the evolution of two­
dimensional cellular automata from initial states containing a single nonzero site. In each case, 
the sequence of two-dimensional patterns formed is shown as a succession of "frames". A space­
time "section" is also shown, giving the evolution of the centre horizontal line in the two­
dimensional lattice with time. Figure 2.2 gives some examples of analogous sections generated by 
typical one-dimensional cellular automata. 

With some cellular automaton rules, simple seeds always die out, leaving the null 
configuration, in which all sites have value zero. With other rules, all or part of the initial seed 
may remain invariaDt with time, yielding a fixed pattern, independent of time. With many cellu­
lar automaton rules, however, a growing pattern is produced, as shown in figures 2.1 and 2.2. 

Figures 2.1(a) and 2.2(a) illustrate the simple case in which a uniform "epitaxial" growing 
pattern is generated. At each time step a pattern with a fixed density of nonzero sites is produced. 
In the two-dimensional case, the pattern has a simple piecewise linear boundary. The set of 
nonzero sites form a pyramid of fixed density in spacetime (or a triangle in the one-dimensional 
case). The faces of this pyramid correspond to the surface traced out by the bound~ or the 
growing pattern in time. Its edges lie along the directions of maximal growth. 

Several dimensions may be defined to characterize the overall limiting structure of patterns 
generated by cellular automaton evolution. We give definitions for the case of cellular automata 
on a two-dimensional lattice; extensions to lattices with other dimensions are straightforward. 
Two general types of dimension may be defined. The first, denoted generically D, depend on the 
overall spacetime pattern. The second, denoted D depend only on the boundary of the pattern. In 
simple cases, the boundary may be defined as the set of sites which can be reached by some path 
from the outside without crossing any nonzero sites. In more complicated cases, where discon­
nected spatial patterns are produced, the definition may be modified to require that the path 
should no sites whose values have ever been nonzero on any previous time step. More complete 
definitions are exact only in the infinite time limit. One considers the intersection of the complete 
spacetime pattern, or of its boundary, with some hyperplane. Let the number of nonzero sites in 
this intersection be n. Then the corresponding dimension is given in terms of the asymptotic 
growth rate of n with some parameter t, usually time, as D =Iog t n. These dimensions are 
analogous to Kolmogorov dimensions, and are presumably in most cases equal to the correspond­
ing Hausdorff dimensions (cf. (171). In all cases, the maximum (minimum) possible value of D 
(D) is the topological dimension of the hyperplane. Often the values D and D may be computed 
directly by geometrical methods. 

The "spatial growth dimension" D~ is defined to be the dimension associated with spatial 
patterns generated at partiCUlar times t; D~ is defined to be the dimension associated with their 
boundaries. A complete definition of the spatial growth dimension requires a subtle large time 
limit to be taken. 

The "total growth dimensions" D and D are taken to be the dimensions associated with 
the complete spacetime pattern, and with its boundary, respectively. These dimensions are usually 

• A cellular automatou approximat.ion to the Euler equations is given in (16). 
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evaluated by considering patterns formed up to some finite time T, and estimating their limit as 
T-oo. 

The "temporal growth dimensions" Dt (S) and Dt (7) are dimensions associated with sections 
through the spacetime pattern in spatial direction z. The total growth dimension may evidently 
be obtained as an appropriate average of the temporal growth dimensions over possible directions. 
(The average must be taken over numbers of nonzero sites n, and so requires exponentiation of 
the growth dimensions.) 

The maximal values for complete growth dimensions are given by the topological dimensions 
of the hyperplanes that define them. These topological dimensions give lower bounds on boun­
dary growth dimensions. For the simple pattern of figure 2.1(30), all the growth dimensions 
achieve their extremal values: D =3, D =Ds =Dt =2, Ds =Dt =1. 

Figure 2.1(b) shows a pattern generated by a two-dimensional cellular automaton for which 
space-time sections in any direction exhibit an asymptotically self-similar or fractal form. Figure 
2.2(b) shows a one-dimensional cellular automaton that yields section of the same form. The den­
sity of nonzero sites in these sections tends asymptotically to zero, showing that their temporal 
growth dimension is less than two. By a simple geometrical construction they are in fact,Jound to 
have dimension log~Qd.59. For the cellular automaton of figure 2.1(b), therefore, Dt(s)=log~, 
for any direction t. The corresponding total dimension is simply D =1+log~. Although the 
interior of the pattern in figure 2.1(b) has a fractal form, its boundary is just as in figure 2.1(30). 
All boundary growth dimensions thus have their minimal values for figure 2.1(b). 

The evaluation of the spatial growth dimension for figure 2.1(b) is slightly more compli­
cated. It can be shown that the number of nonzero sites in the line of a section through the pat­
tern of figure 2.1(b) corresponding to time t is given by 2* 1(t), where '# 1(t ) gives the number of 
nonzero digits in the binary representation of the integer t [41. (to be continued ... ) 

Figures 2.1(c) and 2.2(d) show examples or cellular automata which generate complicated 
patterns that are not homogeneous, but appear to have fixed nonzero asymptotic density. It is 
remarkable that simple rules, even starting from the simple initial conditions shown, can generate 
patterns of such apparent complexity. It seems likely that the iteration of the cellular automaton 
rule is essentially the simplest procedure by which these patterns can be specified. The pattern 
obtained after t time steps could then effectively be generated only by explicit evolution of the 
cellular automaton for time t. This is in contrast to the case or the patterns in figures 2.1(b), 
2.2(b) and 2.2(c). The form of such self-similar patterns at any time t may be found by a simple 
fixed procedure or "closed form" expression. If the procedure were implemented as a recursive 
function, then the number of temporary storage elements would be fixed, independent of t . The 
function would thus be primitive recursive (e.g. (111), and could be converted to a purely iterative 
form. On the other hand, for figures 2.1(c) and 2.2(d) it seems likely that no such simple fixed 
procedure can be given, and that a general recursive function is required. Such a function cannot 
be converted to an iterative form, and its evaluation in general requires a number of temporary 
storage elements that increases without bound with t . 

The nonzero asymptotic density or the pattern in figure 2.2(c), and the regularity of its 
boundary imply that all of its growth dimensions are extremal just as for figure 2.1(30). 

Figures 2.1(d), (e) and (f) illustrate cellular automata which give patterns that exhibit corru­
gated, dendritic, boundaries. Such complicated boundaries can have no analogue in one­
dimensional cellular automata: they are a first example of a qualitative phenomenon that requires 
two or more dimensions. 

Figure 2.1(d) is for the simple additive rule that takes the value of each site to be the sum 
modulo two of the previous values of all sites in its neighbourhood. The total growth dimension 
for this rule, and its analogues on d-dimensionallattices, is given by [4110g2/d(Jl+4/d +1)}, or 
approximately 2.45 for d =2. The temporal growth dimension obtained by intersection with a 
spacetime hyperplane of topological dimension d I is given by the same formula, with d I replac­
ing d. 
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The cellular automata oC figures 2.1(e) and (C) give rise to patterns with nonzero asymptotic 
densities. Their complete growth dimensions are thereCore maximal. Their boundaries are however 
corrugated. They have Cractal Corms analogous to Koch curves, and yield non-minimal growth 
dimensions. In each case, the pattern grows by producing "branches" along the Cour lattice direc­
tions. Each oC these branches then in turn produces sidebranches, which themselves produce side­
branches, and so on. This recursive process yields a highly corrugated boundary. However, as the 
process continues, the sidebranches grow into each other, forming an essentially solid region. In 
fact, after each 2i time steps the boundary takes on an essentially regular form. It is only 
between such times that a dendritic boundary is present. 

Figure 2.1(e) is an example of a "solidification" cellular automaton rule 161, in which any 
site, once it attains value one, can never revert to value zero. Such rules are of significance in stu­
dies oC processes such as crystal growth. Notice that although the interior of figure 2.1(e) takes on 
a fixed form with time, the possibility oC a simple one-dimensional cellular automaton model for 
the boundary alone is precluded by its corrugated form. 

Empirical studies indicate that among all (symmetric) two-dimensional cellular automata, 
patterns with the form ot figure 2.1(c) are the most commonly generated. Fractal boundaries are 
comparatively common, but their growth dimensions are usually quite close to the minimal value. 
Fractal sections are also comparatively common tor five-neighbour rules, but become less common 
for nine-neigh bour rules. 

Figure 2.3 shows the evolution ot various two-dimensional cellular automata from initial 
states containing both single nonzero sites, and small regions with a few nonzero sites. After a 
long time, the overall patterns generated are seen to be largely independent of the particular form 
ot the initial state. Deformations in boundaries occur only on length scales of order the size of the 
initial region of nonzero sites, and presumably become negligible in the infinite time limit. In 
cases such as (c) and (e), the form ot the initial state leads to specific dislocations in the final pat­
tern. 

The rules for the all the two-dimensional cellular automata shown in figures 2.1 and 2.3 are 
completely invariant under all the rotation and refiection symmetry transformations on their 
neighbourhoods. Figure 2.4 shows patterns generated by cellular automaton rules with lower sym­
metries. These patterns are often complicated both in their boundaries and internal structure. 

Cellular automaton rules embody a finite maximum information propagation speed. This 
implies the existence of a "bounding surface" expanding at this finite speed. All nonzero sites gen­
erated by cellular automaton evolution from a localized seed must lie within this bounding sur­
face. (The cellular automata considered here leave a background of zero sites invariant; such a 
background must be mapped to itself after at most k time steps with any cellular automaton 
rule.) 

The pattern generated after t time steps by any cellular automaton is always bounded by 
the polytope (planar-faced surface) corresponding to the "unit cell" formed from the set of vectors 
specifying the displacements of sites in the neighbourhood, magnified by a factor t in linear 
dimensions (d. 1141). Thus patterns generated by five-neighbour cellular automaton rules always 
lie within an expanding diamond-shaped region, while those with nine-neighbour rules may fill out 
a square region. 

The actual bounding surface for a particular cellular automaton rule often lies far inside the 
surface obtained by magnifying the unit cell. A sequence of better approximations to the bound­
ing surface may be found as follows. First consider a set of sites representing the neighbourhood 
for a cellular automaton rule. If the centre site has value one at a particular time step, there 
could exist configurations for which all of the sites in the neighbourhood would attain value one 
on the next time step. However, there may be some sites whose values cannot change from zero 
to one in a single time step with any configuration. Growth does not occur along directions 
corresponding to such sites. The polytope formed from sites in the neighbourhood, excluding such 
sites, may be magnified by a factor t to yield a first approximation to the actual bounding surface 
Cor a cellular automaton rule. A better approximation is obtained from the polytope obtained 
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aCter two time steps oC cellular automaton evolution, magnified by a (actor t /2. 

The actual bounding surCaces(or five-neighbour two-dimensional cellular automaton rules 
usually have their maximal diamond-shaped Corm. However, many nine-neighbour rules have a 
diamond-shaped Corm, rather than their maximal square (orm. Some nine-neighbour rules, such as 
those o( figures 2.3(g) and (h) have octagonal bounding surfaces, while still others, such as those 
oC figure 2.3{i) have dodecagonal bounding surfaces. The cellular automata rules with lower sym­
metries illustrated in figure 2.4 in many cases exhibit more complicated boundaries, with lower 
symmetries. 

Patterns that maintain regular boundaries with time typically fill out their bounding surrace 
at all times. Dendritic patterns, however, usually expand with the bounding surrace only along a 
(ew axes. In other directions, they meet the bounding surface only at specific times, typically o( 
the Corm 21 . At other times, they lie within the bounding surface. 

Dendritic boundaries are typically generated by cellular automaton rules that exhibit 
"growth inhibition". Growth inhibition occurs it there exist some IIj Cor which 11>(111, .. ,0, .. ,111\ )=1, 
but 11>(111) .. ,0, .. ,111\)' or vice-versa. Such behaviour appears to be common in physical and other 
systems. 

Figure 2.5 shows examples oC two-dimensional cellular automata that exhibit the compara­
tively rare phenomenon oC slow, diffusive, growth (rom simple seeds. Figure 2.6 gives a one­
dimensional cellular automaton with essentially analogous behaviour. 

The phenomen"on is most easily discussed in the one-dimensional case. The pattern shown in 
figure 2.6 is such that it expands by one site at a particular time step only it the site on the boun­
dary has value one. If the boundary site has one its other three possible nonzero values, then on 
average, no expansion occurs. The cellular automaton rule is such that the boundary sites have 
values one through (our with roughly equal (requencies. Thus the pattern expands on average at a 
speed oC about 1/4 sites per time step (on each side). 

The origin o( diffusive growth is similar in the two-dimensional case. Growth occurs there 
only when some particular several-site structure appears on the boundary. Many boundary struc­
tures occur with roughly equal probabilities, so that the average growth rate is small. A remark­
able Ceature is that the boundaries o( the patterns produced do not rollow the poly topic rorm sug­
gested by the underlying lattice construction o( the cellular automaton. Instead, in many cases, 
asymptotically circular patterns appear to be produced. 
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3. Evolution from disordered lnltlal statea 

In this section, we discuss the evolution 01 cellular automata Irom disordered initial states, 
in which each site is randomly chosen to have value zero or one (usually with probability). Such 
disordered configurations are typical members 01 the set 01 all possible configurations. Patterns 
generated Irom them are thus typical 01 those obtained with any initial state. The presence 01 
structure in these patterns is an indication 01 sell-organization in the cellular automaton. 

& mentioned in section 1, lour qualitative classes 01 behaviour have been identified in the 
evolution 01 one-<iimensional cellular automata Irom disordered initial states. Examples 01 these 
classes are shown in figure 3.1. Figure 3.2 shows the evolution 01 some typical two-dimensional 
cellular automata Irom disordered initial states. The same lour qualitative classes 01 behaviour 
may again be identified here. In lact, the space-time sections lor two-dimensional cellular auto­
mata have a striking qualitative similarity to sections obtained Irom one-dimensional cellular 
automata, perhaps with some probabilistic noise added. 

Just as in one dimension, some two-dimensional cellular automata evolve Irom almost all 
initial states to a unique homogeneous state, such as the null configuration. The final state lor 
such class 1 cellular automata is usually reached alter just a lew time steps, but in some rare 
cases, there may be a long transient. 

Figure 3.2(a) gives an example 01 a two-dimensional cellular automaton with class 2 
behaviour. The disordered initial state evolves to a collection 01 separated simple structures, each 
stable or oscillatory- with a small period. Each 01 these structures is a remnant 01 a particular 
leature in the initial state. The cellular automaton rule acts as a "filter" which preserves only cer­
tain leatures 01 the initial state. There is usually a simple pattern to the set olleatures preserved, 
and to the set 01 persistent structures produced. It should in lact be possible to devise cellular 
automaton rules that recognize particular sets 01 leatures, and to use such class 2 cellular auto­
mata lor practical image processing tasks (d. 1181). 

The patterns generated by evolution Irom several different disordered configurations accord­
ing to a particular cellular automaton rule are almost always qualitatively similar. Yet in many 
cases the cellular automaton evolution is unstable, in that small changes in the initial state lead 
to increasing changes in the patterns generated with time. Figures 3.1 and 3.2 include difference 
patterns that illustrate the effect 01 changing the value 01 a single site in the initial state. For 
class 2 cellular automata, such a change affects only a finite region, and the difference pattern 
remains bounded with time. Information propagates only a finite distance in class 2 cellular auto­
mata, so that a particular region 01 the final state is determined Irom a bounded region in the ini­
tial state. For class 3 cellular automata, on the other hand, inlormation generically propagates at 
a nonzero speed lorever, and a small change in the initial state affects an ever-increasing region. 
The difference patterns lor class 3 cellular automata thus grow without bound, usually at a con­
stant rate. 

The locally periodic patterns generated alter many time steps by class 2 cellular automata 
such as that in figure 3.2(a) consist 01 many separated structures located at essentially arbitrary 
positions. Figure 3.2{b) sho~s another lorm 01 class 2 cellular automaton. There are lour basic 
"phases". Two have vertical stripes, with stripes either on even or odd sites. The other two 
phases have horizontal stripes. Regions that take on lorms corresponding to one 01 these phases 
are invariant under the cellular automaton rule. Starting Irom a typical disordered state, each 
region in the cellular automaton lattice evolves towards a partiCUlar phase. At large times, the 
cellular automaton thus "crystallizes" into a patchwork 01 "domains". The domains consist 01 
regions in particular phases. They are separated by domain walls. In the example 01 figure 3.2(b), 
these domain walls become essentially stationary alter a finite time. A change in a single initial 
site produces a difference pattern that ultimately spreads only along the domain walls. The spread 
continues only so loog as each successive region on the domain wall contains only particular 
arrangements 01 site values. The spread stops if a "pinning delect", corresponding to other 
arrangements 01 site values, is encountered. The arrangement 01 site values on the domain walls 
may in a first approximation be considered random. The difference pattern will thus spread lor­
ever only if the arrangements 01 site values necessary to support to support its propagation occur 
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with a probability above the percolation threshold, so that they form an infinite connected cluster 
with probability one. 

Figure 3.2(e) shows an example of a two-dimensional cellular automaton in which the 
domain walls can continue to move forever, essentially by a diffusion process. Figure 3.1{d) shows 
a one-dimensional cellular automaton with domain walls that exhibit analogous behaviour (cf. 
[19,201). In both cases, some domains become progressively larger with time, while i>thers eventu­
ally disappear completely. The domain walls in ligure 3.2(e) behave as if they carry a positive sur­
face tension; the diffusion process responsible for their movement is biased to reduce the local cur­
vature of the interface. At large times, therefore, the domains either shrink to zero size, or have 
walls with continually decreasing curvature. 

Figure 3.2(c) shows a two-dimensional cellular automaton with structures analogous to 
domains walls that carry a negative surface tension. More and more convoluted patterns are 
obtained with time. The resulting labyrinthine state is strongly reminiscent of behaviour observed 
with ferrofluids or magnetic bubbles 121). 

Figures 3.2(f), (g) and (h) are examples of two-dimensional cellular automata that exhibit 
class 3 behaviour. Chaotic aperiodic patterns are obtained at all times. Moreover, the difference 
patterns resulting from changes in single initial site values expand at a fixed rate forever. A 
remarkable feature is that in almost all cases (ligure 3.2(h) is an exception), the expansion occurs 
at the same speed in all directions, resulting in an asymptotically circular difference pattern. For 
some rules, the expansion occurs at maximal speed; but often the speed is about 0.8 times the 
maximum. When the difference patterns are not exactly circular, they tend to have rounded 
comer. And even with asymmetrical rules, circular difference patterns are often obtained. A rough 
analogue of this behaviour is found in asymmetric one-dimensional cellular automata which gen­
erate symmetrical difference patterns. Such behaviour is found to become increasingly common as 
k and r increase, or as the number of independent parameters in the rule ~ increases. 

An argument based on the central limit theorem suggests an explanation for the appearance 
of circular difference patterns in two-dimensional class 3 cellular automata. Consider the set of 
sites corresponding to the neighbourhood for a cellular automaton rule. For each site, compute the 
probability that the value of that site changes after one time step of cellular automaton evolution 
when the value of the centre site is changed, averaged over all possible arrangements of site 
values in the neighbourhood. An approximation to the probability distribution of differences is 
then obtained as a multiple convolution of this kernel. The number of convolutions performed 
increases with time. If the number of neighbourhood arrangements is sufficiently large, the kernel 
tends to be quite smooth. Convolutions of the kernel thus tend to a Gaussian form, independent 
of direction. 

Some asymmetric class 3 cellular automata yield difference patterns that expand say in the 
horizontal direction, but contract in the vertical direction. At large times, such cellular automata 
produce patterns consisting of many independent horizontal lines, each behaving essentially as a 
one-dimensional class 3 cellular automaton. 

Class 3 behaviour is considerably the commonest among two-dimensional cellular automata, 
just as it is for one-dimensional cellular automata with large Ie and r. It appears that as the 
number of parameters or degrees of freedom in a cellular automaton rule increases, there is a 
higher probability for some degree of freedom to show chaotic behaviour, leading to overall 
chaotic behaviour. 

Figures 3.1(i) show examples of class 4 one-dimensional cellular automata. A characteristic 
feature of class 4 cellular automata is the existence of a complicated set of persistent structures, 
some of which propagate with time. Class 4 rules appear to occur with a frequency of a few per­
cent among all one-dimensional cellular automaton rules. Often one suspects that some degrees of 
freedom in a cellular automaton exhibit class 4 behaviour, but they are masked by overall chaotic 
class 3 behaviour. 

Class 4 cellular automata appear to be much less common in two dimensions than in one 
dimension. Figure 3.2(i) shows the evolution of a two-dimensional cellular automaton known as 
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the "Game or Lire" 18). Many persistent structures, some propagating, have been identified in this 
cellular automaton. It has in addition been shown that these structures can be combined to per·­
rorm arbitrary inrormation processing, so that the cellular automaton supports universal computa­
tion 18). Starting rrom a disordered initial state, the density or propagating structures ("gliders") 
produced is about one per 2000 site region. 

Except ror a rew simple variants on the Game or Lire, no other definite class 4 two­
dimensional cellular automata were round in a random sample or several thousand outer totalistic 
rules •. or Some rules that appeared to be or class 2 were round to have long transients, charac­
teristic or class 4 behaviour, but no propagating structures were seen. Other rules seemed to exhi­
bit some class 4 reatures, but they were overwhelmed by dominant class 3 behaviour . 

• A few examples of class 4 behaviour were however found among general rules. Requests for copies of the 
relevant rule tables should be directed to the authon_ 
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4. Global properties 
Section 3 discussed the evolution of cellular automata from particular typical initial states. 

This section considers the global properties of cellular automata, determined by evolution from all 
possible initial states. 

Since most cellular autor.naton rules are irreversible, the set of configurations generated in 
evolution from all possible initial configurations typically contracts with time. Different classes of 
cellular automata yield limiting sets at large times with different structures. 

Entropy and dimension provide quantitative characterizations of the sizes of sets of cellular 
automaton configurations 171. The spatial set entropy or dimension for a set of two-dimensional 
cellular automaton configurations is defined by considering a X 1 X X 2 patch. of sites. If the set 
contains all possible configurations, then all "x lXZ different arrangements of site values must 
occur in the patch. In general let N (X I,X 2) different arrangements occur in the patch. Then the 
set entropy or dimension is defined as the limit 01 1/(X IX 2) logk N (X I,X 2) as XI -00. II the cel­
lular automaton mapping is surjective, so that all possible configurations occur, then this dimen­
sion is equal to one. In general it decreases through irreversible cellular automaton evolution. 

The spatial entropy for configurations generated by, say, one time step of cellular automa­
ton evolution could be calculated by identifying the set 01 configurations that have predecessors 
under the cellular automaton mapping. In a one-dimensional cellular automaton, a block of 
length X is determined by a block of length X +2r on the previous time step. A block of any 
length X can thus have at most "X+2f /le x =k2, predecessors (each of length X +2r). There is 
thus a fixed finite procedure to determine whether any given block can occur [221. As a conse­
quence, a finite characterization of the set of all blocks that occur may be given 1121. Each block 
corresponds to a word in a regular language. The regular language is specified by a finite graph; 
each word corresponds to a particular path through the graph. The graph has at most 2kZ, nodes, 
each node representing roughly a possible subset of the set of ,,2, predecessors. 

In a two-dimensional cellular automaton with nearest-neighbour rules, aX IXX2 patch of 
sites is determined by a (X 1+2)(X 2+2) patch on the previous time step. The number of possible 
predecessors thus grows with the perimeter of the patch, as ,,:(X1+Xz+2). There is thus in general 
no bounded procedure to determine whether patches of any size can be generated in the evolution 
of a two-dimensional cellular automaton. As a consequence, there are strong indications that the 
set of configurations obtained alter a finite number of time steps of two-dimensional cellular auto­
maton evolution is not recursive. 

Some cellular automaton rules lead to surjective mappings which allow all possible 
configurations to be generated at any time. There is a finite procedure to determine whether a 
particular one-dimensional cellular automaton rule leads to a surjective mapping. It appears how­
ever that there can be no analogous general finite procedure for two-dimensional cellular auto­
mata: the problem 01 determining surjectivity is undecidable in this case 1151. 

The set of configurations with a particular period under a one-dimensional cellular automa­
ton mapping forms a finite complement language (subshift 01 finite type), in which only a fixed set 
of finite blocks of site values are excluded 1121. Periodic configurations for a two-dimensional cel­
lular automaton are equivalent to tilings of a plane with dominoes so that all their edge colours 
match. The problem of finding such tHings in general undecidable 1231. Hence it is presumably 
undecidable whether any configurations of given period exist in a particular two-dimensional cel­
lular automaton. If they do exist, then they may in general form form a non-recursive set. 

In addition to considering the set 01 configurations generated at a particular time step in the 
evolution of a cellular automaton, one may also discuss sequences of site values obtained with 
time. In general, one may define entropies or dimensions by counting the numbers of different 
arrangements of site values that occur in regions on various hyperplanes through the spacetime 
pattern formed by the cellular automaton evolution. The magnitude of these entropies and dimen­
sions is largely determined by the degree of correlation between site values in different parts of 
the regions. Two site values may be correlated only if information can travel from one to the 
other. 
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The difference patterns discussed in section 3 provide measures of inCormation propagation. 
The rate of expansion of these difference patterns in some direction may be considered as the 
Lyapunov exponent in that direction Cor the cellular automaton evolution [7,241. One may then 
derive a Camily of inequalities between the Lyapunov exponents and dimensions or entropies for 
two-dimensional cellular automata, largely analogous to those for one-dimensional cellular auto­
mata [7]. One notable phenomenon is that the invariant entropy oC a two-dimensional cellular 
automaton mapping, obtained by considering the number of arrangements of site values in a 
spacetime tube long in the time direction (normalized by the total volume of the tube), vanishes 
unless the Lyapunov exponent is positive in all directions. 
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(a) (b) (c) 

Figure 1.1: Neighbourhood structures considered for two-dimensional cellular automata. In cellular 
automaton evolution, the value of the centre cell is updated according to a rule that depends on 
the values of the shaded cells (including the center cell). Cellular automata with neighbourhood 
(a) are termed "five-neighbour square"; those with neighbourhood (b) are termed "nine-neighbour 
square". (These neighbourhoods are sometimes referred to as the von Neuman 7<. and Moore neigh­
bourhoods, respectively.) Those with neighbourhood (c) are termed "hexagonal". Triangular lat­
tices are also possible, but are not considered here. General cellular automaton rules are specified 
by their effect on arbitrary neighbourhood configurations. Each neighbourhood configuration is 
specified by a number obtained as a sequence of digits Cormed Crom the values of sites in the 
neighbourhood, given in the order indicated. The complete cellular automaton rule is then the 
sequence of digits corresponding to the images of each neighbourhood configuration. Notice that 
five-neighbour square and hexagonal cellular automaton rules may be considered as special cases 
of general nine-neighbour square rules. Totalistic cellular automaton rules take the value of the 
centre site to depend only on the sum of the values of the sites in the neighbourhood. With outer 
totalistic rules , sites are updated according to their previous values, and the sum of the values of 
sites in the cross-hatched region. 
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Figure 2.1: Examples of classes of patterns generated by evolution of two-dimensional cellular 
automata Crom a single site seed. Each part corresponds to a different cellular automaton rule. 
All the rules shown are both 'rotation and reflection symmetric. For each rule, a sequence of 
rrames shows the two-dimensional configurations generated by the cellular automaton evolution 
after the indicated number of time steps. Black squares represent sites with value 1; white squares 
sites with value o. On the lert is a spacetime section showing the time evolution or the centre hor­
izontal line or sites in the two-dimensional lattice. Successive lines correspond to successive time 
steps. The cellular automaton rules shown are five-neighbour square outer totalistic, with codes 
(a) 1022, (b) 510, (c) 374, (d) 614 (sum modulo 2 rule), (e) 174, (C) 494. 
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Figure 2.2: Examples of classes of patterns generated by evolution of one-dimensional cellular 
automata from a single site seed. Successive time steps are shown on successive lines. Nonzero 
sites are shown black. The cellular automaton rules shown are totalistic nearest-neighbour (r = 1), 
with k possible values at each site: (a) k =2, code 14, (b) Ir: =2, code 6, (c) Ir: =2, code 10, (d) 
Ir: =3, code 21, (e) k =3, code 102, (f) k =3, code 138. Irregular patterns are also generated by 
some k =2, r =2 rules (such as that with totalistic code 10), and by asymmetric Ir: =2, r =1 rules 
(such as that with rule number 30). 
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Figure 2.3: Examples of patterns generated by evolution of two-dimensional cellular automata 
Crom minimal seeds and small disordered regions. In most cases, growth is initiated by a seed con­
sisting oC a single nonzero site; Cor some oC the rules shown, a square oC Cour nonzero sites is 
required. The cellular automaton rules shown are nine-neighbour square outer totalistic, with 
codes (a) 143954, (b) 50224, (c) five-neighbour 750, (d) 15822, (e) 699054, (C) 191044, (g) 11202, (h) 
93737, (i) 85507. 
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Figure 2.4: Examples o( patterns generated by growth (rom single site seeds (or 24 time steps 
- according to general nine-neighbour square rules, with symmetries: (a) all, (b) horizOIi'tal and vert­

ical reflection, (c) rotation, (d) vertical reflection, (e) none. 
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Figure 2.5: Examples or two-dimensional cellular automata that exhibit slow diffusive growth rrom 
small disordered regions. The cellular automaton rules shown are nine-neighbour square outer 
totalistic, with codes (a) 256746, (b) 736, (c) 291552. 
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Figure 2.6: Example of a one-dimensional cellular automaton that exhibits slow growth. The rule 
shown is totalistic k =5, r =1, with code 985707700. All nonzero sites are shown black . The ini­
tial state contains a single site with value 3. Growth occurs when a site with value 1 appears on 
the boundary . 
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Figure 3.1: Examples or the evolution or one-<iimensional cellular automata Crom disordered initial 
states. Difference patterns show site values that change when a single initial site value is changed, 
AU nonzero sites are shown black. The ceUular automaton rules shown are totalistic nearest­
neighbour (r=I), with k possible values at each site: (a) k=2, code 12, (b) k=5, code 7530, (c) 
k =3, code 681, (d) k =5, code 3250, (e) k =2, code 6, (C) k =3, code 348, (g) k =3, code 138, (h) 
Ie =3, code 318, (i) k ==3, code 792, 
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Figure 3.2: Examples oC the evolution oC two-dimensional cellular automata Crom disordered initial 
state. The cellular automaton rules shown are totalistic five-neighbour square with codes: (a) 24, 
(d) 510, (e) 52; and outer totalistic nine-neighbour with codes: (b) 736, (c) 196623, (C) 152822, (g) 
143954, (h) 3276, (i) 224 (the "Game oC Lite"). 
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UNIVERSALITY AND COMPLEXITY IN CELLULAR AUTOMAT A 

Stephen WOLFRAM* 
The Institute for Advanced Study, Princeton NJ 08540, USA 

CeIlular automata are discrete dynamical systems with simple construction but complex self-organizing behaviour. Evidence 
is presented that all one-dimensional ceIlular automata faIl into four distinct universality classes. Characterizations of the 
structures generated in these classes are discussed. Three classes exhibit behaviour analogous to limit points, limit cycles and 
chaotic attractors. The fourth class is probably capable of universal computation, so that properties of its infinite time 
behaviour are undecidable. 

1. Introduction 

Cellular automata are mathematical models for 
complex natural systems containing large numbers 
of simple identical components with local inter­
actions. They consist of a lattice of sites, each with 
a finite set of possible values. The value of the sites 
evolve synchronously in discrete time steps accord­
ing to identical rules. The value of a particular site 
is determined by the previous values of a neigh­
bourhood of sites around it. 

The behaviour of a simple set of cellular auto­
mata were discussed in ref. I, where extensive 
references were given. It was shown that despite 
their simple construction, some cellular automata 
are capable of complex behaviour. This paper 
discusses the nature of this complex behaviour, its 
characterization, and classification. Based on in­
vestigation of a large sample of cellular automata, 
it suggests that many (perhaps all) cellular auto­
mata fall into four basic behaviour classes. Cellular 
automata within each class exhibit qualitatively 
similar behaviour. The small number of classes 
implies considerable university in the qualitative 

* Work supported in part by the Office of Naval Research 
under contract number NOOOI4-80-C0657. 

behaviour of cellular automata. This universality 
implies that many details of the construction of a 
cellular automaton are irrelevant in determining its 
qualitative behaviour. Thus complex physical and 
biological systems may lie in the same universality 
classes as the idealized mathematical models pro­
vided by cellular automata. Knowledge of cellular 
automaton behaviour may then yield rather gen­
eral results on the behaviour of complex natural 
systems. 

Cellular automata may be considered as discrete 
dynamical systems. In almost all cases, cellular 
automaton evolution is irreversible. Trajectories in 
the configuration space for cellular automata 
therefore merge with time, and after many time 
steps, trajectories starting from almost all initial 
states become concentrated onto "attractors". 
These attractors typically contain only a very small 
fraction of possible states. Evolution to attractors 
from arbitrary initial states allows for "self­
organizing" behaviour, in which structure may 
evolve at large times from structureless initial 
states. The nature of the attractors determines the 
form and extent of such structures. 

The four classes mentioned above characterize 
the attractors in cellular automaton evolution. The 
attractors in classes I, 2 and 3 are roughly anal-

0167-2789/84/$03.00 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 
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ogous respectively to the limit points, limit cycles 
and chaotic ("strange") attractors found in con­
tinuous dynamical systems. Cellular automata of 
the fourth class behave in a more complicated 
manner, and are conjectured to be capable of 
universal computation, so that their evolution may 
implement any finite algorithm. 

The different classes of cellular automaton be­
haviour allow different levels of prediction of the 
outcome of cellular automaton evolution from 
particular initial states. In the first class, the out­
come of the evolution is determined (with proba­
bility I), independent of the initial state. In the 
second class, the value of a particular site at large 
times is determined by the initial values of sites in 
a limited region. In the third class, a particular site 
value depends on the values of an ever-increasing 
number of initial sites. Random initial values then 
lead to chaotic behaviour. Nevertheless, given the 
necessary set of initial values, it is conjectured that 
the value of a site in a class 3 cellular automaton 
may be determined by a simple algorithm. On the 
other hand, in class 4 cellular automata, a particu­
lar site value may depend on many initial site 
values, and may apparently be determined only by 
an algorithm equivalent in complexity to explicit 
simulation of the cellular automaton evolution. 
For these cellular automata, no effective prediction 
is possible; their behaviour may be determined 
only by explicit simulation. 

This paper describes some preliminary steps 
towards a general theory of cellular automaton 
behaviour. Section 2 below introduces notation 
and formalism for cellular automata. Section 3 
discusses general qualitative features of cellular 
automaton evolution illustrating the four behav­
iour classes mentioned above. Section 4 introduces 
entropies and dimensions which characterize 
global features of cellular automaton evolution. 
Successive sections consider each of the four 
classes of cellular automata in tum. The last 
section discusses some tentative conclusions. 

This paper covers a broad area, and includes 
many conjectures and tentative results. It is not 
intended as a rigorous mathematical treatment. 

2. Notation and formalism 

al') is taken to denote the value of site i in a 
one-dimensional cellular automaton at time step t. 
Each site value is specified as an integer in the 
range 0 through k - I. The site values evolve by 
iteration of the mapping 

a(I)-F[ (I-I) (I-I) (I-I) (I-I)] 
j - a l _ r ,aj_r+)o···,a j , ... ,aj+ r . (2.1) 

F is an arbitrary function which specifies the 
cellular automaton rule. 

The parameter r in eq. (2.1) determines the 
"range" of the rule: the value of a given site 
depends on the last values of a neighbourhood of 
at most 2r + I sites. The region affected by a given 
site grows by at most r sites in each direction at 
every time step; propagating features generated in 
cellular automaton evolution may therefore travel 
at most r sites per time step. After t time steps, a 
region of at most 1 + 2rt sites may therefore be 
affected by a given initial site value. 

The "elementary" cellular automata considered 
in ref. 1 have k = 2 and r = 1, corresponding to 
nearest-neighbour interactions. 

An alternative form of eq. (2.1) is 

(2.2) 

where the aj are integer constants, and the function 
f takes a single integer argument. Rules specified 
according to (2.1) may be reproduced directly by 
taking aj = k r - j • 

The special class of additive cellular automaton 
rules considered in ref. 2 correspond to the case in 
which f is a linear function of its argument modulo 
k. Such rules satisfy a special additive super­
position principle. This allows the evolution of any· 
initial configuration to be determined by super­
position of results obtained with a few basis 
configurations, and makes possible the algebraic 
analysis of ref. 2. 

"Totalistic" rules defined in ref. 1, and used in 
several examples below, are obtained by taking 

-, 
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(2.3) 

in eq. (2.2) . Such rules give equal weight to all sites 
in a neighbourhood, and imply that the value of a 

site depends only on the total of all preceding 

neighbourhood site values . The results of section 3 
suggest that totalistic rules exhibit behaviour char­
acteristic of all cellular automata. 

Cellular automaton rules may be combined by 
composition. The set of cellular automaton rules is 
closed under composition, although composition 

increases the number of sites in the neigh­
bourhood . Composition of a rule with itself yields 

patterns corresponding to alternate time steps in 

time evolution according to the rule . Compositions 
of distinct results do not in general commute. 
However, if a composition FJF2 of rules generates 
a sequence of configurations with period n, then 

the rule F2FJ must also allow a sequence of 
configurations with period n. As discussed below, 

this implies that the rules FJF2 and F2FJ must yield 

behaviour of the same class. 

The configuration ai = ° may be considered as a 
special "null" configuration ("ground state"). The 
requirement that this configuration remain invari­

ant under time evolution implies 

F[O, 0, .. . , 0] = ° (2.4a) 

a nd 

f[O] = 0 . (2.4b) 

All rules satisfy this req uirement if iterated at most 
k times, at least up to a relabelling of the k possible 

values. 
It is convenient to consider symmetric rules, for 

which 

(2.5) 

Once a cellular automaton with symmetric rules 
has evolved to a symmetric state (in which 

a" + i = a,, _ i for some n and all i), it may sub­
sequently generate only symmetric states (as-

suming symmetric boundary conditions), since the 

operation of space reflection commutes with time 
evolution in this case. 

Rules satisfying the conditions (2.4) and (2.5) 

will be termed " legal". 

The cellular automaton rules (2.1) and (2 .2) may 

be considered as discrete analogues of partial 
differential equations of order at most 2r + I in 
space, and first order in time. Cellular automata of 
higher order in time may be constructed by allow­

ing a particular site value to depend on values of 

a neighbourhood of sites on anum ber s of previous 

time steps. Consideration of "effective" site values 
L;, -: ~ m"a\t - ,,) always allows equivalent first-order 

rules with k = m S 
- 1 to be constructed. 

The form of the function F in the time evolution 
rule (2.1) may be specified by a "rule number" [I] 

RF = I F[ai _ " ... , ai + r]krf ~- rkr - jai + j. (2.6) 
{(lj _ , , (lj +,} 

The function f in eq. (2.2) may similarly be 

specified by a numerical "code" 

(2r + J)(k - J) 

Cr = L k"f[n]. (2.7) 
n = O 

The condition (2.4) implies that both RF and Cf are 
multiples of k. 

In general, there are a total of e (2r + I ) possible 

cellular automaton rules of the form (2.1) or (2.2). 
Of these, e r

+
l
(k

r
+ J)/2- J are legal. The rapid growth 

of the number of possible rules with r implies that 
an exponentially small fraction of rules may be 
obtained by composition of rules with smaller r. 

A few cellular automaton rules are "reducible" 

in the sense that the evolution of sites with partic­

ular values, or on a particular grid of positions and 
times, are independent of other site values . Such 
cellular automata will usually be excluded from the 
classification described below. 

Very little information on the behaviour of a 
cellular automaton can be deduced directly from 
simple properties of its rule. A few simple results 
are nevertheless clear. 
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First, necessary (but not sufficient) conditions 
for a rule to yield unbounded growth are 

F[ai _n ai - r + I, ... , ai-I> 0, 0, ... ,0] 1= 0, 

F[O, ... , 0, 0, ai + I> ••• , ai + r] 1= ° , (2.8) 

for some set of ai• If these conditions are not 
fulfilled then regions containing nonzero sites sur­
rounded by zero sites can never grow, and the 
cellular automaton must exhibit behaviour of class 
I or 2. For totalistic rules, the condition (2.8) 
becomes 

f[n] 1= ° (2.9) 

for some n < r. 
Second, totalistic rules for which 

f[nIl Z f[n~ (2.10) 

for all nl > n2 exhibit no "growth inhibition" and 
must therefore similarly be of class 1 or 2. 

One may consider cellular automata both finite 
and infinite in extent. 

When finite cellular automata are discussed be­
low, they are taken to consist of N sites arranged 
around a circle (periodic boundary conditions). 
Such cellular automata have a finite number kN of 
possible states. Their evolution may be represented 
by finite state transition diagrams (cf. [2]), in which 
nodes representing each possible configuration are 
joined by directed arcs, with a single arc leading 
from a particular node to its successor after evo­
lution for one time step. After a sufficiently long 
time (less than k N), any finite cellular automaton 
must enter a cycle, in which a sequence of 
configurations is visited repeatedly. These cycles 
represent attractors for the cellular automaton 
evolution, and correspond to cycles in the state 
transition graph. At nodes in the cycles may be 
rooted trees representing transients. The transients 
are irreversible in the sense that nodes in the tree 
have a single successor, but may have several 
predecessors. In the course of time evolution, all 

states corresponding to nodes in the trees ulti­
mately evolve through the configurations repre­
sented by the roots of the trees to the cycles on 
which the roots lie. Configurations corresponding 
to nodes on the periphery of the state transition 
diagram (terminals or leaves of the transient trees) 
are never reached in the evolution: they may occur 
only as initial states. The fraction of configurations 
which may be reached after one time step in 
cellular automaton evolution, and which are there­
fore not on the periphery of the state transition 
diagram, gives a simple measure of irreversibility. 

The configurations of infinite cellular automata 
are specified by (doubly) infinite sequences of site 
values. Such sequences are naturally identified as 
elements of a Cantor set (e.g. [3]). (They differ from 
real numbers through the inequivalence of 
configurations such as .111111 ... and 1.0000 ... ). 
Cellular automaton rules define mappings from 
this Cantor set to itself. The mappings are invari­
ant under shifts by virtue of the identical treatment 
of each site in eqs. (2.1) and (2.2). With natural 
measures of distance in the Cantor set, the map­
pings are also continuous. The typical irre­
versibility of cellular automaton evolution is mani­
fest in the fact that the mapping is usually not 
injective, as discussed in section 4. 

Eqs. (2.1) and (2.2) may be generalized to several 
dimensions. For r = I, there are at least two 
possible symmetric forms of neighbourhood, con­
taining 2d + 1 (type I) and Y (type II) sites re­
spectively; for larger r other "unit cells" are 
possible. 

3. Qualitative characterization of cellular 
automaton behaviour 

This section discusses some qualitative features 
of cellular automaton evolution, and gives empir­
ical evidence for the existence of four basic classes 
of behaviour in cellular automata. Section 4 intro­
duces some methods for quantitative analysis of 
cellular automata. Later sections use these meth-
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ods to suggest fundamental characterizations of 
the four cellular automaton classes. 

Fig. 1 shows the pattern of configurations gener­
ated by evolution according to each of the 32 
possible legal totalistic ru les with k = 2 and r = 2, 
starting from a "disordered" initial configuration 
(in which each site value is independently chosen as ° or 1 with probability D. Even with such a struc­
tureless initial state, many of the rules are seen to 
generate patterns with evident structure. While the 
patterns obtained with different rules all differ in 

detail , they appear to fall into four qualitative 
classes: 

I) Evolution leads to a homogeneous state (real­
ized for codes 0, 4, 16, 32, 36, 48, 54, 60 and 62). 

2) Evolution leads to a set of separated simple 
stable or periodic structures (codes 8, 24, 40, 56 
and 58). 

3) Evolution leads to a chaotic pattern (codes 2, 
6, 10, 12, 14, 18, 22, 26, 28, 30, 34, 38, 42, 44, 46 
and 50). 

4) Evolution leads to complex localized struc­
tures, sometimes long-lived (codes 20 and 52). 

Some patterns (e.g. code 12) assigned to class 3 
contain many triangular " clearings" and appear 
more regular than others (e.g. code 10). The degree 
of regularity is related to the degree of irre­
versibility of the rules, as discussed in section 7. 

Fig. 2 shows patterns generated from several 
different initial states according to a few of the 
cellular automaton rules of fig. I. Patterns ob­
tained with different initial states are seen to differ 
in their details, but to exhibit the same character­
istic qualitative features. (Expectional initial states 
giving rise to different behaviour may exist with 
low or zero probability.) Fig. 3 shows the 
differences between patterns generated by various 
cellular automaton rules from initial states 
differing in the value of a single site. 

"This sampling and many other investigations reported in 
this paper were performed using the C language computer 
program[4]. Requests for copies of this program should be 
directed to the author. 

Figs . 4, 5 and 6 show examples of various sets 
of totalistic cellular automata. Fig. 4 shows some 
k = 2, r = 3 rules, fig. 5 some k = 3, r = 1 rules , 
and fig. 6 some k = 5, r = I rules. The patterns 
generated are all seen to be qualitatively similar to 
those of fig. I , and to lie in the same four classes. 

Patterns generated by all possible k = 2, r = I 
cellular automata were given in ref. 1, and a re 
found to lie in classes I, 2 and 3. Totalistic k = 2, 
r = I rules are found to give patterns typical of all 
k = 2, r = I rules. In general, totalistic rules appear 
to exhibit no special simplifications, and give rise 
to behaviour typical of all cellular automaton rules 
with given k and r . 

An extensive sampling of many other cellular 
automaton rules supports the general conjecture 
that the four classes introduced above cover all 
one-dimensional cellular automata*. 

Table I gives the fractions of various sets of 
cellular automata in each of the four classes. With 
increasing k and r, class 3 becomes overwhelmingly 
the most common. Classes I and 2 are decreasingly 
common. Class 4 is comparatively rare, but be­
comes more common for larger k and r. 

"Reducible" cellular automata (mentioned in 
section 2) may generate patterns which contain 
features from several classes. In a typical case, fixed 
or propagating "membranes" consisting of sites 
with a particular value may separate regions con­
taining patterns from classes 3 or 4 formed from 
sites with other values. 

This paper concerns one-dimensional cellular 
automata. Two-dimensional cellular automata 
also appear to exhibit a few distinct classes of 
behaviour. Superficial investigations [5] suggest 

Table I 
Approximate fractions of legal totalistic cellular automaton 
rules in each of the four basic classes 

k=2 k = 2 k = 2 k = 3 
Class r = l r=2 r = 3 r = 1 

1 0.50 0.25 0.09 0.12 
2 0.25 0.16 0.11 0.19 
3 0.25 0.53 0.73 0.60 
4 0 0.06 0.06 0.07 
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Fig. Ic. 

Fig. la-c. Evolution of all possible legal one-dimensiona l tota li stic cellula r automata wi th k = 2 and r = 2. k gives the number of 
possible values for each site, and r gives the range of the cellular automaton rules . A range r = 2 allows the nearest a nd next-nearest 
neighbours of a site to affect its value on the next time step. Time evolution for totali stic cellular automata is defined by eqns. (2.2) 
and (2.7). The initia l state is taken disordered, each site havi ng va lues 0 and I with independent equal probabilities. Configura tions 
obtained a t successive time steps in the cellular automaton evolution are shown on successive horizontal lines. Black squares represent 
sites with value I; white squares si tes with va lue O. All the cellular automaton rules illustrated are seen to exhibit one of four qualitative 
classes of behaviour. 

that these classes may in fact be identical to the 

four found in one-dimensional cellular automata. 

4. Quantitative characterizations of cellular 

automaton behaviour 

Thi s section describes quantitative statistical 

measures of order and chaos in pa tterns generated 
by cellular automaton evolution. These measures 
may be used to distingu ish the four classes of 

behaviour identified qualitatively above. 
Consider first the statistical properties of 

configurations generated at a particular time step 
in cellular automaton evolution. A disordered ini ­

tial state, in which each site takes on its k possible 
va lues with equal independent probabilities, is 

sta tistically random. Irreversible cellular 

a utomaton evolution generates deviations from 

statistical randomness. In a random sequence, all 

e possible subsequences ("blocks") of length X 
must occur with equal probabilities. Deviations 

from randomness imply unequal probabilities for 

different subsequences. With probabilities p ~X) for 
the k X possible sequences of site values in a length 
X block, one may define a specific " spatial set 

entropy" 

(4.1) 

where 8(p) = 1 for p > ° and 8(0) = 0, and a 
specific "spatial measure entropy" 

(4.2) 

I 
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k=2. r=2. totalislic rule. code 12 (001100) 

k=2. r=2, lotalistic rule. code 24 (011000) k=2. r=2. totalislic rule. code 24 (011000) 
.~-'A"'- .,~"""" I • I....... -.-p,aw' .~.... .... 

Fig.2b. 

Fig. 2. Evolution of some cellular automata illustrated in fig. I from several disordered states. The first two initial states shown differ 
by a change in the values of two sites, the next by a change in the values of ten sites. The last state is completely different. 
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Fig. 3. Differences modulo two between patterns generated by the time evolution of several cellular automata illustrated in fig. I with 
disordered states differing by a change in the value of a single si te. 
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Fig. 4. Examples of the evolution of typical cell ular automata with k = 3 (three possible site values) and r = I (only neares t neighbours 
included in iime evolution rules). White sq ua res represent value 0, grey sq ua res value I, and black squares value 2. The initial state 
is ta ken disordered, with each site having va lues 0, I and 2 with equal independent probabilities. 
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Fig. 5. Examples of the evolution of typical k = 2, r = 3 cellular automata from a disordered initial state. 
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Fig. 6. Examples of the evolution of typical k = 5, r = I cellular automata from a disordered initial state. Darker squares represent 
sites with larger values. 
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In both cases, the superscript (x) indicates that 
"spatial" sequences (obtained at a particular time 
step) are considered. The "set entropy" (4.1) is 
determined directly by the total number N(x)(X) of 
length X blocks generated (with any nonzero 
probability) in cellular automaton evolution, ac­
cording to 

(4.3) 

In the "measure entropy" (4.2) each block is 
weighted with its probability, so that the result 
depends explicitly on the probability measure for 
different cellular automaton configurations, as in­
dicated by the subscript Jl.. Set entropy is often 
called "topological entropy"; measure entropy is 
sometimes referred to as "metric entropy"· (e.g. 
[6]). For blocks of length 1, the measure entropy 
s~)(1) is related to the densities Pi' of sites with each 
of the k possible values i. s~)(2) is related to the 
densities of "digrams" (blocks of length 2), and so 
on. In general, the measure entropy gives the 
average "information content" per site computed 
by allowing for correlations in blocks of sites up to 
length X. Note that the entropies (4.1) and (4.2) 
may be considered to have units of (k-ary) bits per 
unit distance. 

In the equation below, s&l stands for either set 
entropy s(x) or for measure entropy s~). 

The definitions (4.1) and (4.2) yield immediately 

(4.4) 

The first inequality is saturated (equality holds) 
only for "equidistributed" systems, in which all 
nonzero block probabilities p}x) are equal. The 
second inequality is saturated if all possible length 
X blocks of site values occur, but perhaps with 

*The terms "set" and "measure" entropy, together with "set" 
and "measure" dimension, are introduced here to rationalize 
nomenclature. 

unequal probabilities. sp(X) = I only for "X­
random" sequences [7], in which all k X possible 
sequences of X site values occur with equal proba­
bilities. In addition to (4.4), the definitions (4.1) 
and (4.2) imply 

(4.5) 

s~<)(X) = 0 if and only if just one length X block 
occurs with nonzero probability, so that s(x)(X) = 0 
also. As discussed below, the inequality (4.5) is 
saturated for class 1 cellular automata. 

Both set and measure entropies satisfy the 
subadditivity condition 

(XI + X2)s&l(XI + X2) ~ Xls&l(XI) + X2s&l(X2) • 

(4.6) 

The inequality is saturated if successive blocks of 
sites are statistically uncorrelated. In general, it 
implies some decrease in s&l(X) with X (for exam­
ple, s&l(2X) ~ s&!(X». For cellular automata with 
translation invariant initial probability measures, 
stronger constraints may be obtained (analogous 
to those for "stationary" processes in commu­
nication theory [8]). First, note that bounds on 
s&l(X) valid for any set of probabilities p}x) also 
apply to s(x)(X), since s(x)(X) may formally be 
reproduced from the definition (4.2) for s~x)(X) by 
a suitable (extreme) choice of the p}X). The proba-
b'l' ( )[ Ilty P x ah ... ,ax] for the sequence of site values 
ah' .. , ax is given in general by 

(X)[ ] P ah"" ax 

- p(x)[a ] (x)[ I - h···,aX-IP aXah···,aX_I], (4.7) 

where p(X)[axl ah ... , ax _I] denotes the conditional 
probability for a site value ax, preceded by site 
values ah' .. ,aX-I' Defining a total entropy 

S~x)[ah ... , ax] = 

- LP(x)[ah ... , ax] 10gkP(X)[ah ... ,ax] , (4.8) 

and corresponding conditional total entropy 
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S~)[aXlah ... ' aX-I] 

= - LP(X)[al,· .. , ax] 10gkP(X)[axlah . .. , aX-I] 

:s; S~)[al' ... , ax] , (4.9) 

one obtains 

Xs~)(X) = S~)(X):S; X; I S~)(X -I) 

+-.!..S(X}(X) X J.I • 

Hence, 

s~l(X) :s; s~(X - I) , 

(4.10) 

(4.11) 

so that the set and measure entropies for a trans­
lationally invariant system decrease monotonically 
with the block size X. One finds in addition in this 
case that 

Lli-(Xs~l(X» = (X + l)s~l(X + 1) - 2Xs~l(X) 

+ (X - l)s~l<X - I) :s; 0, (4.12) 

so that Xs~l(X) is a convex function of X. 
With the definition s(x)(O) = 1, this implies that 

there exists a critical block size Xc, such that 

s(X)(X) = I, 

s(x)(X) < 1, 

for X < Xc, 

for X~ Xc·. 
(4.13) 

The significance and values of the critical block size 
Xc will be discussed in section 7 below. 

The entropies s(x) and s~) may be evaluated 
either for many blocks in a single cellular automa­
ton configuration, or for blocks in an ensemble of 
different configurations. For smooth probability 
measures on the ensemble of possible initial 
configurations, the results obtained in these two 
ways are almost always the same. (A probability 
measure will be considered "smooth" if changes in 
the values of a few sites in an infinite configuration 
lead only to infinitesimal changes in the probability 
for the configuration.) The set entropy s(x) is 

typically independent of the probability measure 
on the ensemble, for any smooth measure. The 
measure entropy s~) in general depends on the 
probability measure for initial configurations, al­
though for class 3 cellular automata, it is typically 
the same for at least a large classes of smooth 
measures. Notice that with smooth measures, the 
values of s(x)(X) and s~x)(X) are the same whether 
the length X blocks used in their computation are 
taken disjoint or overlapping. 

The entropies (4.1) and (4.2) are defined for 
infinite cellular automata. A corresponding 
definition may be given for finite cellular automata, 
with a maximum block length given by the total 
number of sites N the cellular automaton. The 
entropies s(X)(N) and s~X)(N) are related to global 
properties of the state transition diagram for the 
finite cellular automaton. The value of s(x)(N) at a 
particular time is determined by the fraction of 
possible configurations which may be reached at 
that time by evolution from any initial 
configuration. The limiting value of s(X)(N) at large 
times is determined by the fraction of configuration 
on cycles in the state transition graph. Starting 
from an initial ensemble in which all kN 
configurations occur with equal probabilities, the 
limiting value of s~x)(N) is equal to the limiting 
value of s(X)(N) if all transient trees in the state 
transition graph for the finite cellular automaton 
are identical, so that all configurations with non­
zero probabilities are generated with the same 
probability (cf. [2]). 

As mentioned in section 2, the configurations of 
an infinite cellular automaton may be considered 
as elements of a Cantor set. For an ensemble of 
disordered configurations (in which each site takes 
on its k possible values with equal independent 
probabilities), this Cantor set has fractal dimension 
1. Irreversible cellular automaton evolution may 
lead to an ensemble of configurations correspond­
ing to elements of a Cantor set with dimension less 
than one. The limiting value of s(x)(X) as X -+ 00 

gives the fractal or "set" dimension of this set. 
Relations between entropy and dimension may 

be derived in many ways (e.g. [6, 9]). Consider a set 
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of numbers in the interval [0, I] of the real line. 
Divide this interval into k b bins of width k - b, and 
let the fraction of bins containing numbers in the 
set be N(b). For large b (small bin width), this 
number grows as k db

• The exponent d is the 
Kolmogorov dimension (or "capacity" (cf. [8])) of 
the set. If the set contains all real numbers in the 
interval [0, I], then N(b)=kb, and d= I, as ex­
pected. If the set contains only a finite number of 
points, then N (b) must tend to a constant for large 
b, yielding d = 0. The classic Cantor set consists of 
real numbers in the interva l [0, I], whose ternary 
decomposition contains only the digits ° and 2. 
Dividing the interva l into 3b equal bins, it is clear 
that 2b of these bins contain points in the set. The 
dimension of the set is thus log) 2. This dimension 
may a lso be found by an explicit recursive geo­
metrical construction, using the fact that the set is 
"self-similar", in the sense that with appropriate 
magnification, its parts are identical to the whole. 

The example above suggests that one may define 
a "set dimension" d according to 

. I 
d = hm -b 10gkN(b) , 

b~ oo 

(4.14) 

where N (b) is the number of bins which contain 
elements of the set. The bins are of equal size, and 
their tota l number is taken as k b

. Except in partic­
ularly pathological examples*, the dimension ob­
tained with this definition is equal to the more 
usual Hausdorff (or "fractal") dimension (e.g. [II]) 
obtained by considering the number of patches at 
arbitrary positions required to cover the set (rather 
than the number of fixed bins containing elements 
of the set) . 

The definition (4.14) may be applied directly to 
cellular automaton configurations. The k b "bins" 
may be taken to consist of cellular automaton 
configurations in which a block of b sites has a 

• Such as the set formed from the end points of the intervals 
at each stage in the geometrical construction of the classic 
Can tor set. This set has zero Hausdorff dimension, but Kol­
mogorov dimension log} 2 [9]. 

particular sequence of values. The definition (4.3) 
of set entropy then shows that the set dimension is 
given by 

d (X) = lim s«)(X) . 
x-~ oo 

(4.15) 

A disordered cellular automaton configuration, in 
which all possible sequences of site values occur 
with nonzero probability (or an ensemble of such 
configurations), gives d(x) = I, as expected. Simi­

larl y, a homogeneous configuration, such as the 
null configuration, gives d(x) = 0. 

The set of configurations which appear at large 
times in the evolution of a cellular automaton 
constitute the attractors for the cellular automa­
ton. The set dimension of these attractors is given 
in terms of the entropies for configurations appear­
ing at large times by eq. (4.15). 

Accurate direct evaluation of the set entropy 
s(x)(X) from cellular a utomaton configurations typ­
ically requires sampling of many more than k X 

length X blocks. Inadequate samples yield system­
atic underestimates of s(x)(X). Direct estimates are 

most accurate when a ll nonzero probabilities for 
length X blocks are equa l. In this case, a sample of 
k b blocks yields an entropy underestimated on 
average by approx imately 

(4. 16) 

Unequal probabilities increase the magnitude of 
this error, and typically prevent the generation of 
satisfactory estimates of d(x) from direct simu­
lations of cellular a utomaton evolution. (If the 
probabilities follow a log normal distribution, as in 
many continuous chaotic dynamical systems [12], 
then the exponentia l in eq. (4.16) is apparently 
replaced by a power [13]. ) 

T he dimension (4.15) is given as the limiting 
exponent with which N(x)(X) increases for large X. 
In the formula (4.15), this exponent is obtained as 
the limit of 10gk[N(X)1 /X] for large X. If N(x)(X) 
indeed increases roughly exponentially with X, 
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then the alternative formula 

(4.17) 

is typically more accurate if entropy values are 
available only for small X. 

The set dimension (4.15) may be used to charac­
terize the set of configurations occurring on the 
attractor for a cellular automaton, without regard 
to their probabilities. One may also define a "mea­
sure dimension" d~) which characterizes the proba­
bility measure for the configurations (cf. [12]): 

d~) = lim s~)(X) . 
X .... 00 

(4.18) 

It is clear that 

0< d(x) < d(x) < 1 
- Jl - -' (4.19) 

The measure dimension d~) is equal to the 
"average information per symbol" contained in the 
sequence of site values in a cellular automaton 
configuration. If the sequence is completely ran­
dom (or "oo-random" [7]), then the probabilities 
pIx) for all k X sequences of length X must be equal 
for all X, so that d~) = 1. In this case, there is no 
redundancy or pattern in the sequence of site 
values, so that determination of each site value 
represents acquisition of one (k-ary) bit of infor­
mation. A cellular automaton configuration with 
any structure or pattern must give d~) < 1. 

In direct simulations of cellular automaton evo­
lution, the probabilities pIX) for each possible length 
X block are estimated from the frequencies with 
which the blocks occur. These estimated proba­
bilities are thus subject to Gaussian errors. Al­
though the individual estimated probabilities are 
unbiased, the measure entropy deduced from them 
according to eq. (4.2), is systematically biased. Its 
mean typically yields a systematic underestimate of 
the true measure entropy, and with fixed sample 

size, the underestimate deteriorates rapidly with 
increasing X, making an accurate estimate of d~) 
impossible. However, since an unbiased estimate 
may be given for any polynomial function of the 
pIX), unbiased estimated upper and lower bounds 
for the measure entropy may be obtained from 
estimates for polynomials in pIX) just larger and just 
smaller than - pIX) 10gkPlx) for 0 ~ pIx) ~ I [14]. In 
this way, it may be possible to obtain more accu­
rate estimates of s~) for large X, and thus of d~). 

The "spatial" entropies (4.1) and (4.2) were 
defined in terms of the sequence of site values in a 
cellular automaton configuration at a particular 
time step. One may also define "temporal" entro­
pies which characterize the sequence of values 
taken on by a particular site though many time 
steps of cellular automaton evolution, as illustrated 
in fig. 7. With probabilities pIt) for the kT possible 
sequences of values for a site at T successive time 
steps, one may define a specific temporal set en­
tropy in analogy with eq. (4.1) by 

-x­la! 

II 
Ib! 

-x­
Ie! 

(4.20) 

Fig. 7. Space-time regions sampled in the computation of (a) 
spatial entropies, (b) temporal entropies and (c) patch or 
mapping entropies. In case (c), the values of sites in the 
cross-hatched area are completely determined by values in the 
black "rind". 

i 
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and a specific temporal measure entropy in anal­
ogy with eq. (4.2) by 

(4.21) 

These entropies satisfy relations directly analogous 
to these given in eqs. (4.3) through (4.6) for spatial 
entropies. They obey relations analogous to (4.11) 
and (4.12) only for cellular automata in "equi­
librium", statistically independent of time. The 
temporal entropies (4.20) and (4.21) may be con­
sidered to have units of (k-ary) bits per unit time. 

Sequences of values in particular cellular autom­
aton configurations typically have little similarity 
with the "time series" of values attained by a 
particular site under cellular automaton evolution. 
The spatial and temporal entropies for a cellular 
automaton are therefore in general quite different. 
Notice that the spatial entropy of a cellular autom­
aton configuration may be considered as the tem­
poral entropy of a pure shift mapping applied to 
the cellular automaton configuration. 

Just as dimensions may be assigned to the set of 
spatial configurations generated in cellular autom­
aton evolution, so also one may assign dimensions 
to the set of temporal sequences generated by the 

. evolution. The temporal set dimension may be 
defined in analogy with eq. (4.15) oy 

d(t) = lim s(I)(T) , (4.22) 
T-+co 

and the temporal measure dimension may be 
defined by 

d~) = lim s~)(T). 
T-+co 

(4.23) 

If the evolution of a cellular automaton is peri­
odic, so that each site takes on a fixed cycle of 
values, then 

(4.24) 

As discussed in section 6 below, class 2 cellular 
automata yield periodic structures at large times, 
so that the correspondingly temporal entropies 
vanish. 

As a generalization of the spatial and temporal 
entropies introduced above, one may consider 
entropies associated with space-time "patches" in 
the patterns generated by cellular automaton evo­
lution, as illustrated in fig. 7. With probabilities 
plt,X) for the e T possible patches of spatial width 
X and temporal extent T, one may define a set 
entropy 

and a measure entropy 

Clearly, 

sl:MT) = s~t)(T; I) , 

s~I(X) = ! s~t)(I; X) . 
X 

(4.25) 

(4.26) 

(4.27) 

If no relation existed between configurations at 
successive time steps then the entropies (4.25) and 
(4.26) would be bounded simply by 

(4.28) 

The cellular automaton rules introduce definite 
relations between successive configurations and 
tighten this bound. In fact, the values of all sites in 
a T x X space-time patch are determined accord­
ing to the cellular automaton rules by the values in 
the "rind" of the patch, as indicated in fig. 7. The 
rind contains only X + 2r(T - I) sites (where r is 
the "range" of the cellular automaton rule, defined 
in section 2), so that 

s~;X)(T; X) ~ s(t;x)(T; X) ~ [X + 2r(T - I)]/T. 

(4.29) 
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For large T (and fixed X), therefore 

s(/;X)(T' X) < s(/;x)(T' X) < 2r p ,- ,-. (4.30) 

If both X and T tend to infinity with T / X fixed, 
eq. (4.30) implies that the "information per site" 
s~;x)(T; X)/X in a T x X patch must tend to zero. 
The evolution of cellular automata can therefore 
never generate random space-time patterns. 

With T-+oo, X fixed, the length X horizontal 
section of the rind makes a negligible contribution 
to the entropies. The entropy is maximal if the 2r 
vertical columns in the rind are statistically inde­
pendent, so that 

s~t)( 00; X) ~ 2rs!:M (0) = 2rd~) . (4.31) 

In addition, 

s~t)(oo;X) ~ s~r)(oo; X + 1), (4.32) 

where the bounds are saturated for large X if the 
time series associated with different sets of sites are 
statistically uncorrelated. 

The limiting set entropy 

h = lim s(/;X)(T; X) 
T .... oo 

(4.33) 
X .... 00 

T/X .... oo 

for temporally-extended patches is a fundamental 
quantity equivalent to the set (or topological) 
entropy of the cellular automaton mapping in 
symbolic dynamics. h may be considered as a 
dimension for the mapping. It specifies the asymp­
totic rate at which the number of possible histories 
for the cellular automaton ihcreases with time. The 
limiting measure entropy 

hp = lim s~X)(T; X) 
T .... oo 

(4.34) 
X .... 00 

T/X .... oo 

gives the average amount of "new information" 
contain~ in each cellular automaton configur­
ation, and not already determined from previous 

configurations. Eqs. (4.31) and (4.32) show that 

(4.35) 

In addition, 

~)~2rd~!. (4.36) 

The basic cellular automaton time evolution rule 
(2.1) implies that the value ai of a site i at a 
particular time step depends on sites a maximum 
distance r away on the previous time step accord­
ing to the function F[ai_r> ... ,ai+ r ]. After T time 
steps, the values of the site could depend on sites 
at distances up to rT, so that features in patterns 
generated by cellular automaton evolution could 
propagate at "speeds" up to r sites per time step. 
For many rules, however, the value of a site after 
many time steps depends on fewer initial site 
values, and features may propagate only at lower 
speeds. In general, let IIFTII denote the minimum R 
for which the value of site i depends only on the 
initial values of sites i - R, ... , i + R. Then the 
maximum propagation speed associated with the 
cellular automaton rule F may be defined as 

A+ = lim IIFTII/T. 
T .... oo 

(4.37) 

(The rule is assumed symmetric; for nonsymmetric 
rules, distinct left and right propagation speeds 
may be defined.) Clearly, 

(4.38) 

2rT • 
--2A+T-

, I t I , 
I , 

I , 
I T \ I 

~ 
, I , I 

\ I 

Fig. 8. Pattern of dependence of temporal sequences on spatial 
sequences, used in the proof of inequalities between spatial and 
temporal entropies. 
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When },+ = 0, finite regions of the cellular au­
tomaton must ultimately become isolated, so that 

d(l) - h (t ) - ° 
(/') - «1) - . C4.39) 

The construction of fig. 8 shows that for any T, 

C4.40) 

In the limit T - H f ) , the construction implies 

d (t) < 2 1 lex) 
(I') - I\. +C«I) , C 4.41) 

The ratio of temporal to spatia l entropy is thus 

bounded by the maximum propagation speed in 
the cellular automaton . The relation is consistent 
with the assignment of units to the spatial and 

temporal entropies mentioned above. 

The corresponding inequalities for mapping en­

tropies are: 

d~;!) ::; h «I) ::; 2A. + dii:l ' 
h (I') ::; 2rdg!) . C4.42) 

The quantity A. + defined by eq . C4.37) gives the 

maximum speed with which any feature in a cellu­

lar a utomaton may propagate. With many cellular 

automaton rules, however, almost all " features" 

propagate much more slowly. To define an appro­

priate maximum average propagation speed , con­
sider the effect after many time steps of changes in 

the initial state . Let Gclx - x'I; I) denote the 
probability that the va lue of a site at position x ' is 

changed when the value of a site at position x is 
changed 1 time steps before. The form of 

Gclx - x'I; l) for various cellular automaton rules 

is suggested by fig. 3. Gclx - x'I; l) may be consid­
ered as a Green function for the cellular automaton 
evolution. For large I, Gclx - x'I; l) typically van­
ishes outside a "cone" defined by Ix - x'I = I +l. I + 
may then be considered as a maximum average 

propagation speed. In analogy with eqs. C4.41) and 
C 4.42), o ne expects 

C 4.43) 

Mapping a nd temporal entropies thus vanish for 
cellular automata with zero maximum average 

propagation speed. Cellular automata in class 2 

have thi s property. 

The maximum average propagation speed I + 
specifies a cone outside which Gclx - x'I; I) almost 
always vanishes. One may also define a minimum 
average propagation speed I _, such that 

G(lx - x'I; I) > ° for a lmost any Ix - x'I < L . 
The Green function Gclx - x'I; l) gives the 

probability that a particular site is affected by 

changes in a previous configuration . The total 

effect of changes may be measured by the "Ham­
ming di stance" H(r) between configurations before 
and after the changes, defined as the total number 

of site values which differ between the 
configurations after l time steps. (H(I) is anal­

ogous to Lyapunov exponents for continuous dy­

namical systems.) Changing the values of initial 

sites in a small region , H(I) may be given as a space 

integral of the Green function , and for large t 
obeys the inequ~ity 

C4.44) 

to be compared with the result (4.43) obtained 

above. 
The definitions and properties of dimension 

given above suggests that the behaviour these 
quantities determines the degree of " chaotic" be­

haviour associated with cellu lar automaton evo­

lution. "Spatial chaos" occurs when dii:l> 0, and 
"temporal chaos" when d1:!) > 0. Temporal chaos 
requires a nonzero maximum average propagation 

speed for features in cellular automaton patterns, 

and implies that small changes in initial conditions 

lead to effects ever-increasing with time. 

5. Class 1 cellular automata 

Class I cellular automata evolve after a finite 

number of time steps from almost all initial states 

to a unique homogeneous state, in which all sites 
have the same value. Such cellular automata may 
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be considered to evolve to simple "limit points" in 
phase space; their evolution completely destroys 
any information on the initial state. The spatial 
and temporal dimensions for such attractors are 
zero. 

Rules for class 1 cellular automata typically take 
the function F of eq. (2.1) to have the same value 
for almost all of its k(2r+l) possible sets of argu­
ments. 

Some exceptional configurations in finite class 1 
cellular automata may not evolve to a homoge­
neous state, but may in fact enter non-trivial 
cycles. The fraction of such exceptional 
configurations appears to decrease very rapidly 
with the size N, suggesting that for infinite class 
1 cellular automata the set of exceptional 
configurations is always of measure zero in the set 
of all possible configurations. For (legal) class 1 
cellular automata whose usual final state has 
Q; = n, n ¢ 0 (such as code 60 in fig. 1), the null 
configuration is exceptional for any size N, and 
yields Q; = O. 

6. Class 2 cellular automata 

Class 2 cellular automata serve as "filters" which 
generate separated simple structures from particu­
lar (typically short) initial site value sequences·. 
The density of appropriate sequences in a particu­
lar initial state therefore determines the statistical 
properties of the final state into which it evolves. 
(There is therefore no unique large-time (invariant) 
probability measure on the set of possible 
configurations.) Changes of site values in the initial 
state almost always affect final site values only 
within a finite range, typically of order r. The 
maximum average propagation speed I+ defined in 
section 4 thus vanishes for class 2 cellular auto­
mata. The temporal and mapping (but not spatial) 
dimensions for such automata therefore also 
vanish. 

*They are thus of direct significance for digital image pro­
cessing. 

Although I = 0 for all class 2 cellular automata, 
A. is often nonzero. Thus exceptional initial state 
may exist, from which, for example, unbounded 
growth may occur. Such initial states apparently 
occur with probability zero for ensembles of (spa­
tially infinite) cellular automata with smooth 
probability measures. 

The simple structures generated by class 2 cellu­
lar automata are either stable, or are periodic, 
typically with small periods. The class 2 rules with 
codes 8, 24, 40 and 56 illustrated in fig. 1 all 
apparently exhibit only stable perisistent struc­
tures. Examples of class 2 cellular automata which 
yield periodic, rather than stable, persistent struc­
tures include the k = 2, r = 1 cellular automaton 
with rule number 108 [1), and the k = 3, r = 1 
totalistic cellular automaton with code 198. The 
periods of persistent structures generated in the 
evolution of class 2 cellular automata are usually 
less than k!. However, examples have been found 
with larger periods. One is the k = 2, r = 3 total­
istic cellular automata with code 228, in which a 
persistent structure with period 3 is generated. 

The finiteness of the periods obtained at large 
times in class 2 cellular automata implies that.such 
systems have d~) = h(p) = 0, as deduced above from 
the vanishing of I+. The evolution of class 2 
cellular automata to zero (temporal) dimension 
attractors is analogous to the evolution of some 
continuous dynamical systems to limit cycles. 

The set of persistent structures generated by a 
given class 2 cellular automaton is typically quite 
simple. For some rules, there are only a finite 
number of persistent structures. For example, for 
the code 8 and code 40 rules of fig. 1, only the 
sequence 111 (surrounded by 0 sites) appears to be 
persistent. For code 24, III and 1111 are both 
persistent. Other rules yield an infinite sequence of 
peristent structures, typically constructed by a 
simple process. For example, with code 56 in fig. 
1, any sequence of two or more consecutive 1 sites 
is persistent. 

In general, it appears that the set of persistent 
structures generated by any class 2 cellular autom­
aton corresponds to the set of words generated 
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by a regular grammar. A regular grammar [15-18] 
(or- "sofic system" [19]) specifies a regular 
language, whose legal works may be recognized 
by a finite automaton, represented by a finite state 
transition graph. A sequence of symbols (site val­
ues) specifies a particular traversal of the state 
transition graph. The traversal begins at a special 
"start" node; the symbol sequence represents a 
legal word only if the traversal does not end at 
an absorbing "stop" node. Each successive symbol 
in the sequence causes the automaton to make a 
transition from one state (node) to one of k others, 
as specified by the state transition graph. At each 
step, the next state of the automaton depends only 
on its current state, and the current symbol read, 
but not on its previous history. 

The set of configurations (symbol sequences) 
generated from all possible initial configurations 
by one time step of cellular automaton evolution 
may always be specified by a regular grammar. To 
determine whether a particular configuration a(l) 

may be generated after one time step of cellular 
automaton evolution, one may attempt to con­
struct an explicit predecessor a(O) for it. Assume 
that a predecessor configuration has been found 
which reproduces all site values up to position i. 
Definite values a}O) for all j ~ i - r are then deter­
mined. Several of the total of klr sequences of 
values al~r+h ... ,al'!lr+1 may be possible. Each 
sequence may be specified by an integer 
q = l:.J'=o kjal~r+j+l" An integer 1/11 between 0 and 
2k21 may then be defined, with the qth binary bit in 
1/11 equal to one if sequence q is allowed, and 0 
otherwise. Each possible value of 1/1 may be consid­
ered to correspond to a state in a finite automaton. 
1/1 = 0 corresponds to a "stop" state, which is 
reached if and only if a(l) has no predecessors. 
Possible values for al~r+1 are then found from 1/11 
and the value of al'!ll' These possible values then 
determine the value of 1/11+1' A finite state transi­
tion graph, determined by the cellular automaton 
rules, gives the possible transitions I/Ir-+I/II+l" 
Configurations reached after one time step of 
cellular automaton evolution may thus be recog­
nized by a finite automaton with at most 2k21 states. 

The set of such configurations is thus specified by 
a regular grammar. 

In general, if the value of a given site after 1 steps 
of cellular automaton evolution depends on m 
initial site values, then the set of configurations 
generated by this evolution may be recognized by 
a finite automaton with at most 2km states. The 
value of m may increase as 2rt, potentially re­
quiring an infinite number of states in the recog­
nizing automaton, and preventing the specification 
of the set of possible configurations by a regular 
grammar. However, as discussed above, the value 
of m for a class 2 cellular automaton apparently 
remains finite as 1-+00. Thus the set of 
configurations which may persist in such a cellular 
automaton may be recognized by a finite automa­
ton, and are therefore specified by a regular gram­
mar. The complexity of this grammar (measured 
by the minimum number of states required in the 
state transition graph for the recognizing automa­
ton) may be used to characterize the complexity of 
the large time behaviour of the cellular automaton. 

Finite class 2 cellular automata usually evolve to 
short period cycles containing the same persistent 
structures as are found in the infinite case. The 
fraction of exceptional initial states yielding other 
structures decreases rapidly to zero as N increases. 

7. Class 3 cellular automata 

Evolution of infinite class 3 cellular automata 
from almost all possible initial states leads to 
aperiodic ("chaotic") patterns. After sufficiently 
many time steps, the statistical properties of these 
patterns are typically the same for almost all initial 
states. In particular, the density of nonzero sites 
typically tends to a fixed nonzero value (often 
close to 11k). In infinite cellular automata, 
"equilibrium" values of statistical quantities are 
approached roughly exponentially with time, and 
are typically attained to high accuracy after a very 
few time steps. For a few rules (such as the k = 2, 
r = 1 rule with rule number 18 [20]), however, 
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Fig. 9. Evolution of some class 3 totalistic cellular automata with k = 2 and r = 2 (as illustrated in fig. 1) from initial states containing 
one or a few nonzero sites. Some cases yield asymptotically self-similar patterns, while others are seen to give irregular patterns . 

.. 
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"defects" consisting of small groups of sites may 
exist, and may execute approximate random walks, 
until annihilating, usually in pairs. Such processes 
lead to transients which decrease with time only as 
t- I/2• 

Fig. 1 showed examples of the patterns gener­
ated by evolution of some typical class 3 cellular 
automata from disordered initial states. The pat­
terns range from highly irregular (as for code 10), 
to rather regular (as for code 12). The most 
obvious regularity is the appearance of large trian­
gular "clearings" in which all sites have the same 
value. These clearings occur when a "fluctuation" 
in which a sequence of consequence of consecutive 
sites have the same value, is progressively de­
stroyed by the effects of other sites. The rate at 
which "information" from other sites may "flow" 
into the fluctuation, and thus the slope of the 
boundaries of the clearing, may range from 11k to 
r sites per time step. The qualitative regularity of 
patterns generated by some class 3 rules arises from 
the high density of long sequences of correlated site 
values, and thus of triangular clearings. In general, 
however, it appears that the density of clearings 
decreases with their size n roughly as (J -no Different 
cellular automata appear to yield a continuous 
range of (J values. Those with larger (J yield more 
regular patterns, while those with smaller (J yield 
more irregular patterns. No sharp distinction ap­
pears to exist between class 3 cellular automata 
yielding regular and irregular patterns. 

The first column in fig. 9 shows patterns ob­
tained by evolution with typical class 3 cellular 
automaton rules from initial states containing a 
single nonzero site. Unbounded growth, leading to 
an asymptotically infinite number of nonzero sites, 
is evident in all cases. Some rules are seen to give 
highly regular patterns, others lead to irregular 
patterns. 

The regular patterns obtained with rules such as 
code 2 are asymptotically self-similar fractal curves 
(cf. [II)). Their form is identical when viewed at 
different magnifications, down to length scales of 
order r sites. The total number of nonzero sites in 
such patterns after t time steps approaches t d; 

where d gives the fractal dimension of the pattern. 
Many class 3 k = 2 rules generate a similar pattern, 
illustrated by codes 2 and 34 in fig. 9, with 
d = log2 3 ~ 1.59. Some rules yield self-similar pat­
terns with other fractal dimensions (for example, 
code 38 yields d ~ 1.75), but all self-similar pat­
terns have d < 2, and lead to an asymptotic density 
of sites which tends to zero as td - 2• 

Rule such as code 10 are seen to generate 
irregular patterns by evolution even from a single 
site initial state. The density of nonzero sites in 
such patterns is found to tend asymptotically to a 
nonzero value; in some, but not all, cases the value 
is the same as would be obtained by evolution from 
a disordered initial state. The patterns appear to 
exhibit no large-scale structure. 

Cellular automata contain no intrinsic scale 
beyond the size of neighbourhood which appears 
in their rules. A configuration containing a single 
nonzero site is also scale invariant, and any pattern 
obtained by evolution from it with cellular autom­
aton rules must be· scale invariant. The regular 
patterns in fig. 9 achieve this scale invariance by 
their self-similarity. The irregular patterns pre­
sumably exhibit correlations only over a finite 
range, and are therefore effectively uniform and 
scale invariant at large distances. 

The second and third columns in fig. 11 shows 
the evolution of several typical class 3 cellular 
automata from initial states with nonzero sites in 
a small region. In some cases (such as code 12), the 
regular fractal patterns obtained with single non­
zero sites are stable under addition of further 
nonzero initial sites. In other cases (such as code 2) 
they are seen to be unstable. The numbers of rules 
yielding stable and unstable fractal patterns are 
found to be roughly comparable. 

Many but not all rules which evolve to regular 
fractal patterns from simple initial states generate 
more regular patterns in evolution from disordered 
initial states. Similarly, many but not all rules 
which produce stable fractal patterns yield more 
regular patterns from disordered initial states. For 
example, code 42 in figs. 1 and 9 generates 
stable fractal patterns from simple initial state, but 
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Fig. 10. Evolution of spatial measure entropies s~X)(X) as a 
function of time for evolution of the class 3 cellular automaton 
with code 12 illustrated in fig. 1 from a disordered initial state. 
The irreversibility of cellular automaton evolution results in a 
decrease of the entropies with time. Rapid relaxation to an 
"equilibrium" state is nevertheless seen. 

leads to an irregular patterns under evolution from 
a disordered state. (Although not necessary for 
such behaviour, this rule possesses the additivity 
property mentioned in section 2.) 

The methods of section 4 may be used to analyse 
the general behaviour of class 3 cellular automata 
evolving from typical initial states, in which all 
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sites have nonzero values with nonzero probability. 
Class 3 cellular automata apparently always ex­
hibit a nonzero minimum average propagation 
speed L. Small changes in initial states thus 
almost always lead to increasingly large changes in 
later states. This suggests that both spatial and 
temporal dimensions d~l and d~) should be non­
zero for all class 3 cellular automata. These dimen­
sions are determined according to eqs. (4.15), 
(4.18), (4.22) and (4.23) by the limiting values of 
spatial and temporal entropies. 

A disordered or statistically random initial state, 
in which each site takes on its k possible values 
with equal independent probabilities, has maximal 
spatial entropy s~l(X) = I for all block lengths X. 
Fig. 10 shows the behaviour of s~)(X) as a function 
of time for several block lengths X in the evolution 
of a typical class 3 cellular automaton from a 
disordered (maximal entropy) initial state. The 
entropies are seen to decrease for a few time steps, 
and then to reach "equilibrium" values. The "equi­
librium" values of s~)(X) for class 3 cellular auto­
mata are typically independent of the probability 
measure on the ensemble of possible initial states, 
at least for "smooth" measures. The decrease in 
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Fig. 11. Evolution of (a) spatial and (b) temporal measure entropies s~X)(X) and s~)(T) obtained at eqUilibrium by evolution of several 
class 3 cellular automata illustrated in fig. I, as a function of the spatial and temporal block lengths X and T. The entropies are 
evaluated for the region indicated in figs. 7(a) and 7(b). The limit of s~x)(X) as X ->00 is the spatial measure dimension of the attractor 
for the system; the limit of s~)(T) as T->oo is the temporal measure dimension. 
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entropy with time manifests the irreversible nature 
of the cellular automaton evolution. The decrease 
is found to be much greater for class 3 cellular 
automata which generate regular patterns (with 
many triangular clearings) than for those which 
yield irregular patterns. The more regular patterns 
require a higher degree of self-organization, with 
correspondingly greater irreversibility, and larger 
entropy decrease. 

As discussed in section 4, the dependence of 
s~l(X) on X measures spatial correlations in cellu­
lar automaton configurations. s~l(X) therefore 
tends to a constant if X is larger than the range of 
any correlations between site values. In the pres­
ence of correlations, s~~(X) always decreases with 
X. Available data from simulations provide re­
liable accurate estimates for s~l(X) only for 
o ~ X ~ 8. Fig. 11 shows the behaviour of the 
equilibrium value of s~)(X) as a function of X over 
this range for several typical class 3 cellular auto­
mata. For rules which yield irregular patterns the 
eqUilibrium value of s~)(X) typically remains ;;a 0.9 
for X ~ 8. s~)(X) at equilibrium typically decreases 
much more rapidly for class 3 cellular automata 
which generate more regular patterns. At least for 
small X, s~)(X) for such cellular automata typically 
decreases roughly as X-~ with " ~ 0.1. 

The values of the spatial set entropy s(x)(X) 
provide upper bounds on the spatial measure 
entropy s~)(X). The distribution of nonzero proba­
bilities pfx) for possible length X blocks is typically 
quite broad, yielding an s~)(X) significantly smaller 
than s(x)(X). Nevertheless, the general behaviour of 
s~)(X) with X usually roughly follows s(x)(X), but 
with a slight X delay. 

As discussed in section 4, the set entropy s(x)(X) 
attains its maximum value of 1 if and only if all P 
sequences of length X appear (with nonzero proba­
bility) in evolution from some initial state. Notice 
that if s(x)(X) = 1 after one time step, then 
s(x)(X) = 1 at any time. In general, s(x)(X) takes on 
value 1 for blocks up to some critical length Xc 
(perhaps infinite), as defined in eq. (4.13). 

Since a block of length X is completely deter­
mined by a sequence of length X + 2r in the 

previous configuration, any predecessors for the 
block may in principle be found by an exhaustive 
search of all k x + 2r possible length X + 2r se­
quences. The procedure for progressive construc­
tion of predecessors outlined in section 6 provides 
a more efficient procedure [21]. The critical block 
length Xc is determined by the minimum number of 
nodes in the finite automaton state transition 
graph visited on any path from the "start" to 
"stop" node. The state transition graph is deter­
mined by the set of transition rules 'P;-+'P1+ 1• 

Starting with length 1 blocks, these transition rules 
may be found by considering construction of all 
possible progressively longer blocks, but ignoring 
blocks associated with values 'P; for which the 
transition rules have already been found. If Xc is 
finite, the "stop" node 'P = 0 is reached in the 
construction of length Xc blocks. Alternatively, the 
state transition graph may be found to consist of 
closed cycles, not including 'P = O. In this case, Xc 
is determined to be infinite. Since the state transi­
tion graph contains at most 2k2r nodes, the value of 
Xc may be found after at most this many tests. The 
procedure thus provides a finite algorithm for 
determining whether all possible arbitrarily long 
sequences of site values may be generated by evo­
lution with a particular cellular automaton rule. 

Table II gives the critical block lengths Xc for the 
cellular automata illustrated in fig. 1. Class 3 
cellular automata with smaller Xc tend to generate 
more regular patterns. Those with larger Xc pre­
sumably give systematically larger entropies and 
their evolution is correspondingly less irreversible. 

For additive cellular automata (such as code 42 
in fig. 1 and table II), all possible blocks of any 
length X may be reached, and have exactly k 2r 

predecessors of length X + 2r. In this case, there­
fore, evolution from a disordered initial state gives 
s(x)(X) = 1 for all X (hence Xc = (0). The equality 
of the number of predecessors for each block 
implies in addition in this case that s~)(X) = 1, at 
least for evolution from disordered initial states . 
Hence for additive cellular automata 

(7.1) 
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Table II 
Values of critical block length Xc for legal totalistic 
k = 2, r = 2 cellular automata as illustrated in fig. I. For 
X < Xc, all k X possible blocks of X site values appear 
with nonzero probability in configurations generated 
after any number of time steps in evolution from disor­
dered initial states, while for X;:: Xc, some blocks are 
absent, so that the spatial set entropy s(x)(X) < 1 

Code 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 

5 
12 
7 

12 
36 
5 
5 
5 
5 

36 
12 
7 

12 
5 
3 

Code 

32 
34 
36 
38 
40 
42 
44 
46 
48 
50 
52 
54 
56 
58 
60 

3 
5 

12 
7 

12 
<Xl 

5 
5 
5 
5 

22 
12 
7 

12 
5 

The configurations generated by additive cellular 
automata are thus maximally chaotic. 

In general cellular automata evolving according 
to eq. (2.1) yield s{x)(X) = 1 for all X, so that 
d{x) = 1, ifF is an injective (one-to-one) function of 
either its first or last argument (or can be obtained 
by composition off unctions with such a property). 
This may be proved by induction. Assume that all 
the blocks of length X are reachable, with prede­
cessors of lengths X + 2r. Then form a block of 
length X + 1 by adding a site at one end. To obtain 
all possible length X + I blocks, the value a' of this 
additional site must range over k possibilities. Any 
predecessors for length X + 1 blocks must be 
obtained by adding a (X + 2r + l)-th site (with 
value a) at one end. For all length X + 1 blocks to 
be reachable, all values of a' must be generated 
when a runs over its k possible values, and the 
result follows. Notice that not all length X + 1 
blocks need have the same (nonzero) number of 
predecessors; so that the measure entropy s~)(X) 
may be less than the set entropy s{x)(X). 

While injectivity of the rule function F for a 

cellular automaton in its first or last arguments is 
sufficient to give d{x) = 1, it is apparently not 
necessary. A necessary condition is not known. 

In section 6 it was shown that the set of 
configurations obtained by cellular automaton 
evolution for a finite number of time steps from 
any initial state could be specified by a regular 
grammar. In general the complexity of the gram­
mar may increase rapidly with the number of time 
steps, potentially leading at infinite time to a set 
not specifiable by a regular grammar. Such behav­
iour may generically be expected in class 3 cellular, 
for which the average minimum propagation speed 
X> O. 

As discussed in section 4, one may consider the 
statistics of temporal as well as spatial sequences of 
site values. The temporal aperiodicity of the pat­
terns generated by evolution of class 3 cellular 
automata from almost all initial states suggests 
that these systems should have nonvanishing tem­
poral entropies s~)(T) and nonvanishing temporal 
dimensions d~). Once again, the temporal entropies 
for blocks starting at progressively later times 
quickly relax to equilibrium values. Notice that the 
dimension dt~) obtained from the large T limit of 
the s~)(T) is always independent of the starting 
times for the blocks. This is to be contrasted with 
the spatial dimensions d~~, which depend on the 
time at which they are evaluated. Just as for spatial 
entropies, it found that the equilibrium temporal 
entropies are essentially independent of probability 
measure for initial configurations. 

The temporal entropies s~)(T) decrease slowly 
with T. In fact, it appears that in all cases 

(7.2) 

The ratio s!Z)(Z)/s!~~(Z) is, however, typically much 
smaller than its maximum value (4.38) equal to the 
maximum propagation speed A+. Notice that the 
value of A.+ determines the slopes of the edges of 
triangular clearings in the patterns generated by 
cellular automaton evolution. 

At least for the class 3 cellular automata in fig. 
1 which generate irregular patterns, the equi-

.. 
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Fig. 12. Examples of the evolution of a class 4 cellular automaton (tota li stic code 20 k = 2, r = 2 rule) from several disordered initial 
states. Persistent structures are seen to be generated in a few cases. The evolution is truncated after 120 time steps. 

librium set entropy s(t)(T) = 1 for all T ~ 8 for 
which data are available. Note that the result 
s(!)(T) = 1 holds for all T for any additive cellular 
automaton rule . One may speculate that class 3 
cellular automata which generate apparently irreg­
ular patterns form a special subclass, characterized 
by temporal dimension d(t) = 1. 

For class 3 cellular automata which generate 
more regular patterns, s(!)(T) appears to decrease, 
albeit slowly, with T. Just as for spatial sequences, 
one may consider whether the temporal sequences 

which appear form a set described by a regular 

grammar. For the particular case of the k = 2, 
r = 1 cellular automaton with rule number 18, 
there is some evidence [21] that all possible tempo­
ral sequences which contain no 11 subsequences 
may appear, so that N(I)(T) = FT where FT is the 
Tth Fibonacci number (FT = FT_ 1 + FT- 2, 

Fo = F, = I). This implies that N(!lT) ~ ¢ T (¢ = 
(J5 + I )/2 ~ 1.618) for large T, suggesting a 
temporal set dimension d(!) = log2 ¢ ~ 0.694. 
In general , however, the set of possible temporal 
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sequences is not expected to be described by a 
regular grammar. 

The nonvanishing value of the average minimum 
propagation speed ,L for class 3 cellular automata, 
suggests that in all cases the value of a particular 
site depends on an ever-increasing number of 
initial site values. However, the complexity of the 
dependence is not known. The value of a site after 
t time steps can always be specified by a table with 
an entry for each of k 2A+' relevant initial sequences. 
Nevertheless, it is possible that a finite state autom­
aton, specified by a finite state transition graph, 
could determine the value of sites at any time 

The behaviour of finite class 3 cellular automata 
with additive rules was analysed in some detail in 
ref. 2. It was shown there that the maximal cycle 
length for additive cellular automata grows on 
average exponentially with the size N of the cellular 
automaton. Most cycles were found to have max­
imallength, and the number of distinct cycles was 
found also to grow on average exponentially with 
N. The lengths of transients leading to cycles was 
found to grow at most linearly with N. The 
fraction of states on cycles was found on average 
to tend a finite limit. 

For most class 3 cellular automata, the average 
cycle length grows quite slowly with N, although in 
some cases, the absolute maximum cycle length 
appears to grow rapidly. The lengths of transients 
are typically short for cellular automata which 
generate more regular patterns, but often become 
very long as N increases for cellular automata 
which generate more irregular patterns. The frac­
tions of states on cycles are typically much larger 
for finite class 3 cellular automata which generate 
irregular patterns than for those which generate 
more regular patterns. This is presumably a 
reflection of the lower irreversibility and larger 

*Each site in this cellular automaton can take on one of two 
possible values; the time evolution rule involves nine site (type 
II) neighbourhoods. If the values of less than 2 or more than 
3 of the eight neighbours of a particular site are nonzero then 
the site takes on value 0 at the next time step; if 2 neighbouring 
sites are nonzero the site takes the same value as on the previous 
time steps; if exactly 3 neighbouring sites are nonzero, the site 
takes on value 1. . 

attractor dimension found for the former case in 
the infinite size limit. 

8. Oass 4 cellular automata 

Fig. 12 shows the evolution of the class 4 
cellular automaton with k = 2, r = 2 and code 
number 20, from several disordered initial 
configurations. In most cases, all sites are seen to 
"die" (attain value zero) after a finite time. How­
ever, in a few cases, stable or periodic structures 
which persist for an infinite time are formed. In 
addition, in some cases, propagating structures are 
formed. Fig. 13 shows the persistent structures 
generated by this cellular automaton from all 
initial configurations whose nonzero sites lie in a 
region of length 20 (reflected versions of the last 
three structures are also found). Table III gives 
some characteristics of these structures. An im­
portant feature, shared by other class 4 cellular 
automata, is the presence of propagating struc­
tures. By arranging for suitable reflections of these 
propagating structures, final states with any cycle 
lengths may be obtained. 

The behaviour of the cellular automata illus­
trated in fig. 13, and the structures shown in fig. 14 
are strongly reminiscent of the two-dimensional 
(essentially totalistic) cellular automaton known as 
the "Game of Life"· (for references see [1]). The 
Game of Life has been shown to have the im­
portant property of computational universality. 
Cellular automata may be viewed as computers, in 
which data represented by initial configurations is 
processed by time evolution. Computational uni­
versality (e.g. [15-18]) implies that suitable initif' 
configurations can specify arbitrary algorithm 
procedures. The system can thus serve as a genen 
purpose computer, capable of evaluating a~ 

(computable) function. Given a suitable encoding, 
the system may therefore in principle simulate any 
other system, and in this sense may be considered 
capable of arbitrarily complicated behaviour. 

The proof of computational universality for the 
Game of Life [22] uses the existence of cellular 
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Fig. 13. Persistent structures found in the evolution of the class 4 cellular automaton illustrated in fig. 12 from initial states with 
nonzero sites in a region of 20 or less sites. Reflected versions of the last three structures are also found. Some properties of the 
structures are given in table III. These structures are almost sufficient to provide components necessary to demonstrate a universal 
computation capability for this cellular automaton. 

100 
T 

Fig. 14. Fraction of configurations in the class 4 cellular 
automaton of figs. 12 and 13 which evolve to the null 
configuration after Ttime steps, from initial states with nonzero 
sites in a region of length less than X (translates of 
configurations are not included). The asymptotic "halting 
probability" is around 0.93; 7% of initial configurations gener­
ate the persistent structures of fig. 13 and never evolve to the 
null configuration. 

automaton structures which emulate components 
(such as "wires" and "NAND gates") of a stan­
dard digital computer. The structures shown in fig. 
14 represent a significant fraction of those neces­
sary. A major missing element is a configuration 

(dubbed the "glider gun" in the Game of Life) 
which acts like a clock, and generates an infinite 
sequence of propagating structures. Such a 
configuration would involve a finite number of 
initial nonzero sites, but would lead to un1;>ounded 
growth, and an asymptotically infinite number of 
nonzero sites. There are however indications that 
the required initial configuration is quite large, and 
is very difficult to find. 

These analogies lead to the speculation that class 
4 cellular automata are characterized by the capa­
bility for universal computation. k = 2, r = 1 cellu­
lar automata are too simple to support universal 
computation; the existence of class 4 cellular auto­
mata with k = 2, r = 2 (cf. figs. 12 and 13) and 
k = 3, r = 1 suggests that with suitable time evo­
lution rules even such apparently simple systems 
may be capable of universal computation. 

There are important limitations on predictions 
which may be made for the behaviour of systems 
capable of universal computation. The behaviour 
of such systems may in general be determined in 
detail essentially only by explicit simulation of 
their time evolution. It may in general be predicted 
using other systems only by procedures ultimately 
equivalent to explicit simulation. No finite algo-
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Table III 
Persistent structures arising from initial configurations with length less than 20 
sites in the class 4 totalistic cellular automaton with k = 2, r = i and code number 
20, illustrated in· figs. 12, 13 and 14. 4>(X) gives the fraction of initial 
configurations with nonzero sites in a region less than X sites in length which 
generate a particular structure. When an initial configuration yields multiple 
structures, each is included in this fraction. 

Period Minimal predecessor 4>(10) 4>(20) 

2 10010111 (151) 0.027 0.024 
9R 10111011 (187) 0.012 0.0061 
I 10111101 (189) 0.014 0.0075 
22 11000011 (195) 0.018 0.017 
9L 11011101 (221) 0.012 0.0061 
lR 1001111011 (635) 0.0020 0.00066 
IL 1101111001 (889) 0.0020 0.00066 
38 11110100100101111 (125231) 0 2.9 x 10-5 

4 10010001011011110111 (595703) 0 7.6 x 10-6 

4 10010101001010110111 (610999) 0 7.6 x 10-6 

4 10011000011111101111 (624623) 0 7.6 x 10-6 

rithm or procedure may be devised capable of 
predicting detailed behaviour in a computationally 
universal system. Hence, for example, no general 
finite algorithm can predict whether a particular 
initial configuration in a computationally universal 
cellular automaton will evolve to the null 
configuration after a finite time, or will generate 
persistent structures, so that sites with nonzero 
values will exist at arbitrarily large times. (This is 
analogous to the insolubility of the halting prob­
lem for universal Turing machines (e.g. [15-18]).) 
Thus if the cellular automaton of figs. 12 and 13 is 
indeed computationally universal, no finite algo­
rithm could predict whether a particular initial 
state would ultimately "die", or whether it would 
ultimately give rise to one of the persistent struc­
tures of fig. 13. The result could not be determined 
by explicit simulation, since an arbitrarily large 
time might elapse before one of the required states 
was reached. Another universal computer could 
also in general determine the result effectively only 
by simulation, with the same obstruction. 

If class 4 cellular automata are indeed capable of 
universal computation, then their evolution in­
volves an element of unpredictability presumably 
not present in other classes of cellular automata. 

Not only does the value of a particular site after 
many time steps potentially depend on the values 
of an increasing number of initial site values; in 
addition, the value cannot in general be determined 
by any "short-cut" procedure much simpler than 
explicit simulation of the evolution. The behaviour 
of a class 4 cellular' automaton is thus essentially 
unpredictable, even given complete initial informa­
tion: the behaviour of the system may essentially be 
found only by explicitly running it. 

Only infinite cellular automata may be capable 
of universal computation; finite cellular automata 
involve only a finite number of internal states, and 
may therefore evaluate only a subset of all com­
putable functions (the "space-bounded" ones). 

The computational universality of a system im­
plies that certain classes of general predictions for 
its behaviour cannot be made with finite algo­
rithms. Specific predictions may nevertheless often 
be made, just as specific cases of generally non­
computable function may often be evaluated. 
Hence, for example, the behaviour of all 
configurations with nonzero sites in a region of 
length 20 or less evolving according to the cellular 
automaton rules illustrated in figs. 12 and 13 has 
been completely determined. Fig. 14 shows the 

.. 
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fraction of initial configurations which evolve to 
the null state within T time steps, as a function of 

T, for various sizes X of the region of nonzero sites . 
For large X and large T, it appears that the fraction 
of configurations which generate no persistent 
structures (essentially the "halting probability" ) is 
approximately 0.93. It is noteworthy that the 
curves in fig. 14 as a function of T appear to 

approach a fixed form at large X. One may specu­

late that some aspects of the form of such curves 
may be universal to all systems capable of universal 
computation. 

The sets of persistent structures genera ted by 
class 4 cellular automata typically exhibit no sim­
ple patterns, and do not appear to be specified, for 

example, by regular grammars. Specification of 
persistent structures by a finite procedure is neces­
sarily impossible if class 4 cellular automata are 
indeed capable of universal computation. Strong 
support of the conjecture that class 4 cellular 
automata are capable of universal computation 
would be provided by a demonstration of the 
equivalence of systematic enumeration of all per­
sistent structures in particular class 4 cellular auto­
mata to the systematic enumeration of solutions to 
generally insoluble Diophantine equations or word 

problems. 
Although one may determine by explicit con­

struction that specific cellular automata are capa­
ble of universal computation , it is impossible to 
determine in general whether a particular cellular 
automaton is capable of universal computation . 

This is a consequence of the fact that the structures 
necessary to implement universal computation 
may be arbitrarily complicated. Thus, for example, 
the smallest propagating structure might involve 
an arbitrarily long sequence of site values. 

For class 1, 2 and 3 cellular automata, 
fluctuations in statistical quantities are typically 
found to become progressively smaller as larger 
numbers of sites are considered. Such systems 

-This feature allows practical simulation of such cellular 
automata to be made more efficient by storing information on 
the evolution of the specific sequences of sites which occur with 
larger probabilities (cf. [23]). 

therefore exhibit definite properties in the "infinite 
volume" limit. For class 4 cellular automata, it 
seems likely that fluctuations do not decrease as 
larger number of sites are considered, and no 
simple smooth infinite volume limit exists. Im­
portant qualitative effects can arise from special 
sequences appearing with arbitrarily low proba­
bilities in the initial state. Consider for example the 
class 4 cellular automaton illustrated in figs. 12 and 
13. The evolution of the finite sequences in this 
cellular automaton shown in fig . 12 (and many 

thousands of other finite sequences tested) suggests 
that the average density of nonzero sites in 
configurations of this cellular automaton should 
tend to a constant at large times. However, in a 
sufficiently long finite initial sequence, there should 
exist a subsequence from which a "glider gun" 
structure evolves. This structure would generate an 

increasing number of nonzero sites at large times, 
and its presence would completely change the 
average large time density. As a more extreme 
example, it seems likely that a sufficiently long (but 
finite) initial sequence should evolve to behave as 
a self-reproducing "organism" , capable of even­

tually taking over its environment, and leading to 

completely different large time behaviour. Very 
special , and highly improbable, initial sequences 
may thus presumably result in large changes in 
large time properties for class 4 cellular automata. 
These sequences must appear in a truly infinite 
(typical) initial configuration. Although their den­
sity is perhaps arbitrarily low, the sequences may 
evolve to structures which come to dominate the 

statistical properties of the system. The possibility 
of such phenomena suggest that no smooth infinite 
volume exists for class 4 cellular automata. 

Some statistical results may be obtained from 
large finite class 4 cellular automata, although the 
results are expected to be irrelevant in the truly 

infinite volume limit. The evolution of most class 
4 cellular automata appears to be highly 
irreversible*. This irreversibility is reflected in the 
small set of persistent structures usually generated 
as end-products of the evolution . Changes in small 
regions of the initial state may affect many sites at 
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large times. There are however very large 
fluctuations in the propagation speed, and no 
meaningful averages may be obtained. It should be 
noted that groups of class 4 cellular automata with 
different rules often yield qualitatively similar be­
haviour, and similar sets of persistent structures, 
suggesting further classification. 

The frequency with which a particular structure 
is generated after an infinite time by the evolution 
of a universal computer from random (disordered) 
input gives the "algorithmic probability" PA [24] 
for that structure. This algorithmic probability has 
been shown to be invariant (up to constant multi­
plicative factors) for a wide class of universal 
computers. In general, one may define an "evo­
lutionary probability" PE(t) which gives the proba­
bility for a structure to evolve after t time steps 
from a random initial state. Complex structures 
formed by cellular automata will typically have 
evolutionary probabilities which are initially small, 
but later grow. As a simple example, the proba­
bility for the sequence which yields a period 9 
propagating structure in the cellular automaton of 
figs. 12 and 13 begins small, but later increases to 
a sufficiently large value that such structures are 
almost always generated from disordered states of 
2000 or more sites. In a much more complicated 
example, one may imagine that the probability for 
a self-reproducing structure begins small, but later 
increases to a substantial value. Structures whose 
evolutionary probability becomes significant only 
after a time > T may be considered to have 
"logical depth" [25] T. 

9. Discussion 

Cellular automata are simple in construction, 
but are capable of very complex behaviour. This 
paper has suggested that a considerable univer­
sality exists in this complex behaviour. Evidence 
has been presented that all one-dimensional cellu­
lar automata fall into four basic classes. In the first 
class, evolution from almost all initial states leads 
ultimately to a unique homogeneous state. The 

second class evolves to simple separated structures. 
Evolution of the third class of cellular automata 
leads to chaotic patterns, with varying degrees of 
structure. The behaviours of these three classes of 
cellular automata are analogous to the limit points, 
limit cycles and chaotic ("strange") attractors 
found in continuous dynamical systems. The 
fourth class of cellular automata exhibits still more 
complicated behaviour, and its members are con­
jectured to be capable of universal computation. 

Even starting from disordered or random initial 
configurations, cellular automata evolve to gener­
ate characteristic patterns. Such self-organizing 
behaviour occurs by virtue of the irreversibility of 
cellular automaton evolution. Starting from al­
most any initial state, the evolution leads to attrac­
tors containing a small subset of all possible states. 
At least for the first three classes of cellular auto­
mata, the states in these attractors form a Cantor 
set, with characteristic fractal and other dimen­
sions. For the first and second classes, the states in 
the attractor may be specified as sentences with a 
regular grammar. For the fourth class, the attrac­
tors may be arbitrarily complicated, and no simple 
statistical characterizations appear possible. 

The four classes of cellular automata may be 
distinguished by the level of predictability of their 
"final" large time behaviour given their initial 
state. For the first class, all initial states yield the 
same final state, and complete prediction is trivial. 
In the second class, each region of the final state 
depends only on a finite region of the initial state; 
knowledge of a small region in the initial state thus 
suffices to predict the form of a region in the final 
state. In the evolution of the third class of cellular 
automata, the effects of changes in the initial state 
almost always propagate forever at a finite speed. 
A particular region thus depends on a region of the 
initial state of ever-increasing size. Hence any 
prediction of the "final" state requires complete 
knowledge of the initial state. Finally, in the fourth 
class of cellular automata, regions of the final state 
again depend on arbitrarily large regions of the 
initial state. However, if cellular automata in the 
class are indeed capable of universal computation, 

, 
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then this dependence may be arbitrarily complex, 
and the behaviour of the system can be found by 
no procedure significantly simpler than direct sim­
ulation . No meaningful prediction is therefore 
possible for such systems. 
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PHYSICS-LIKE MODELS OF COMPUT A TION* 

Norman MARGOLUS 
MIT Laboratory for Computer Science, Cambridge Massachusetts 02139, USA 

Reversible Cellular Automata are computer-models that embody discrete analogues of the classical-physics notions of space, 
time, locality, and microscopic reversibility. They are offered as a step towards models of computation that are closer to 
fundamental physics. 

1. Introduction 

Reversible Cellular Automata (RCA) are 
computer-models that embody discrete analogues 
of the classical-physics notions of space, time, 
locality, and microscopic reversibility. 

In this paper, I will describe some RCA, explain 
how they can be used as computer models, and 
discuss RCA analogues of energy and 
entropy - concepts that are fundamental in phys­
ics, but have not played a fundamental role in 
computer theory. 

2. Cellular automata 

In CA, 'space' is a regular lattice of 'cells', each 
of which contains one of a small allowed set of 
integers. Only cells that are close together interact 
in one ' time-step' - the time evolution is given by 
a rule that looks at the contents of a few neigh-

* This research was supported in part by the Defense Ad­
vanced Research Projects Agency and was monitored by the 
Office of Naval Research under Contracts Nos. 
NOOOI4-75-C-066I and NOOOI4-83-K-01 25, and in part by 
NSF Grant No. 82 14312-IST. 

** Von Neumann[IO] was interested in the problem of 
evolution - could life emerge from simple rules? He exhibited a 
CA rule that permitted computers, and in which these comput­
ers could reproduce and mutate. In this paper, I refer only to 
the existence of computers when I use the term universal. 

bouring cells, and decides what should change. At 
each step, this local rule is applied everywhere 
simultaneously[IO]. 

The best-known example of such a 'digital­
world ' is Conway's [5] "Game of Life". On a sheet 

of graph-paper, fill each cell with a ' I ' or a '0' . 
In each three-by-three neighbourhood there is a 
center cell and eight adjacent cells. The new state 
of each cell is determined by counting the number 
of adjacent I 's - if exactly two adjacent cells con­
tain a one, the center is left unchanged . If three are 
ones, the center becomes a one. In all other cases, 
the center becomes a zero. 

Such a rule gives rise to a set of characteristic 
patterns that 'move' (reappear in a slightly dis­
placed position after some number of steps) pat­
terns that are stable (unchanging with time) pat­
terns that oscillate (pass through some cycle of 
configurations) and many very complicated inter­
actions and behaviours. The evolution of a given 
initial configuration is often very hard to antici­
pate (see colour plate in [9]). 

One way to show that a given rule can exhibit 
complicated behaviour is to show (as has been 
done for "Life" [4]) that in the corresponding 
'world' it is possible to have computers. If you start 
the automaton with an appropriate initial state, 
you will see digits acting as signals moving about 
and interacting with each other to perform all of 
the logical operations of a digital computer. Such 
a computer-automaton is said to be universal. ** 

0167-2789/84/$03.00 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 
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3. Reversible cellular automata evolution be invertible? 

Any CA rule can be described by an equation of 
the form* 

(I) 

where Si" + I is the state of the cell at position 'i' and 
at time 'I + I', and/(S{i),,) is a function of the states 
of cells in a neighbourhood of i, at time I. 

In general, (I) gives rise to a non-invertible 
dynamics. If/is the 'Life' rule, this evolution is not 
reversible - if an area now contains only zeros, did 
it contain zeros one step ago, or were there perhaps 
some isolated ones that just changed? Its impos­
sible to tell. 

It turns out to be very easy to write down CA 
laws that give an invertible dynamics - just as easy 
as constructing irreversible ones, in fact. Consider 
first the following finite difference equation, with x, 
a real variable: 

(2) 

If you want to cO.mpute X'+l' you must know x, 
and X'_l - these two constitute the complete 'state' 
of the system, For what functions / will the time 

*This serves to clarify what sorts of systems we're dealing 
with, but is often not the simplest or most illuminating way to 
express the rule. 

** Assuming integer addition and subtraction is done without 
error, if such an equation is iterated on a digital computer, its 
time evolution remains exactly reversible, despite roundoff and 
truncation errors in computing f 

***Differences mod-k and logical functions can always be 
re-expressed as ordinary polynomial functions. For example, if 
A and B arc binary variables, then (A - B)2 is the same as 
A + B(mod 2), I - A is the same as not(A), A *B is the same 
as and(A, B), etc. Thus (4) is equivalent to .an ordinary real­
variable finite difference equation with integer initial conditions. 

tThe global time evolution generated by (4) is not guaran­
teed to be invertible unless suitable boundary conditions are 
chosen, such as no boundary (i.e. an infinite or periodic space) 
or 'fixed' boundaries (cell values on the boundary are not 
allowed to change with time). 

tSpatial correlations will not arise if they are initially absent, 
but time correlations are often very evident, and are character­
istic of the particular rule being employed - see the next section. 

(3) 

therefore any / at all will do**! Knowing x for two 
consecutive times allows you to calculate any 
preceding or any succeeding value of x (To my 
knowledge Fredkin [2] was the first to study revers­
ibility in finite-difference-equations of this sort.) 

The generalization to CA is straightforward -let 
x in (2) be replaced by Ci, the contents of the cell 
at position 'i' in our automaton, 

Ci,,+l =/(C{i),,) - Ci,,-l, (4) 

where/ (C{i),,) is any function involving the contents 
of cells near position 'i', at time 'I', and the 
difference is taken mod the number of allowed cell 
values***. If we let the state of a cell correspond 
to its contents in two successive steps, then (4) can 
be reexpressed in the form (1), but its reversibility 
is not manifestt. 

Such rules can be universal (I give an example in 
the appendix). Reversible computation is a rela­
tively new idea [I, 3, 8] that has been used to show 
that a fundamental lower bound on dissipation in 
computers associated with the irreversibility of 
conventional logic elements[6] can be avoided, 

4. Entropy in RCA 

If we fill the cells of our automaton with ran­
domly chosen binary values and then evolve it 
according to the Life rule, we see a complex ebb 
and flow of structures and activity, with so-called 
'gliders' arising here and there, moving across 

dumps of zeros, and then being drawn back into 
a complex boiling 'soup' of activity, or perhaps 
rekindling complicated interactions in an area 
which had settled down into uncoupled, short 
period oscillating structures. 

If, instead of the Life rule, we follow some 
invertible time evolution, we invariably find that, 
at each step, the state of the automaton looks just 
as random as when we startedt. This is expected 
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from a simple counting argument, since most 
configurations look random (only a very few 
random-looking initial configurations can be 
mapped by a given number of invertible steps into 
the few simple-looking configurations, since the 
overall mapping is bijective). 

This is not meant to imply that RCA are less 
interesting than irreversible CA. Starting an RCA 
from a random state is like starting a thermo­
dynamic system in a maximum entropy state - its 
not allowed to get any simpler since its randomness 
can't decrease, and it can't get more complicated, 
since its already as random as it can be, and so 
nothing much happens. 

If we start an RCA from a very non-random 
state (e.g. some small pattern on a background of 
zeros) then we can have an interesting time evo­
lution . If we choose a rule and an initial state that 

allow information to propagate, then what tends 
to happen is that the state of the RCA becomes 
more and more complicated. More precisely, if 
each state of the automaton is viewed as a 
'message', with the contents of the cells being the 
characters of the message, and if only local mea­
sures of correlation are applied, then the amount 
of information* in successive messages is in­
creasing. Of course th:: automaton is really only 
repeatedly encrypting its state, and so if all cor­
relations are taken into account the amount of 
information really never changes. What happens is 
that the automaton will introduce some redun­
dancy into the message, and use more cells to 
encode the same information. Information that 
was initially localized becomes spread out as cor­
relations between the states of many cells, and it 

*For a discussion of the information content of a message, 
cf.[7]. 

**(4) generates a locally invertible time evolution. If we 
know the values of cells near position i at two successive times, 
we can tell what the preceding value of the center cell was. 

***In mechanics, this corresponds to degrees of freedom 
that, for certain initial conditions, are decoupled from the rest. 

tRor rules with 2 states per cell, only two rules, "count the 
parity of the neighbourhood" and its complement, have no 
configuration of part of the neighbourhood that makes the 
remaining neighbours irrelevant. 

becomes very difficult for a locally invertible evo­
lution to put the redundant pieces back 
together**. To use an analogy, an invertible 
mapping could change two copies of this document 
into one copy, and several sheets of blank paper. 
Two separate invertible mappings, each acting 
only on one of the copies, could not accomplish 
this end . 

From the point of view of creatures 'living' 
inside an RCA, their inability to make use of 
complicated correlations between large numbers of 
cells means that for all practical purposes, the 
entropy of the automaton increases. To use a 
thermodynamic analogy, if I want to compress a 
gas, it doesn't help me to know that the gas was 
all in one corner of the room just a few minutes 
ago. I have no ability to make use of the compli­
cated correlations that this statement implies, and 
so I say that entropy increased when the gas 
expanded to its current volume. 

5. Conservation laws in second-order RCA 

In general , an RCA has as many conserved 
quantities as there are cells - it 'remembers' the 
initial state of each cell, since you can recover this 
information by running the system backwards. Do 
these give rise to any invariants which can be 
computed in a local manner from the current state 
of the system? Can we find an invariant that is 
analogous to a classical mechanical energy? 

In RCA, the simplest locally-computable invari­
ants are of course cells whose values never 
change***. Such situations can arise because many 
rules ignore the remainder of the neighbours when 
part of the neighbourhood has some particular 
configurationt. For example, consider any rule 
that, in all cases where the center cell of the 
neighbourhood is I, ignores the rest of the neigh­
bours and returns a 2. Such a rule, when used with 
(4), results in a very simple conservation law. Ifwe 
look at the case in one dimension where the 
automaton at two consecutive time-steps looks like 
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this: 

I - 1 ... 1 . .. '.' indicates a cell whose value is 
... 1 . .. irrelevant to the discussion (5) 

then the center cell here will always be a 1. 
For a more interesting I-dimensional example, 

consider a 2 state per cell CA with a rule f that 
returns a I iff each of the two cells adjacent to the 
center is the same as the center: 

{
I, 

f (c{x},t) = 0, 
if cx-l,t = Cx,t = c x + l,t 

otherwise. 
(6) 

* In irreversible CA, a guarantee that a cell will always be 
part of such a pair does not guarantee that it always has been. 

** An extreme instance of 'decoupling' of entire regions 
occurs with any rule that doesn't depend on the center cell, but 
depends on its nearest neighbours. For example, in ID we might 
have a region that looks like this: 

t-I ... 1.1.0.1 ... 
t ... 1.0.0.1.1. .. 
t+l ... ???? ... 

From (4) it is clear that we have enough information to 
compute the states of the cells marked with '?' - the system 
decouples into two entirely independent (but interleaved) sub­
lattices, each evolving without reference to the other. 

Fig. 1. 

With this rule, 'a' and 'b' standing for any binary 
values, and 'ii', 'b' their binary complements, the 
second-order time evolution given by (4) says that 

{It - I ... aii ...} {I ... bb .. . } 
... bb. .. -+ I + 1 ... aii .. . (7) 

which is again of the same form, so these two cells 
are decoupled from the rest of the automaton. Any 
cell which is not initially part of such a pair will 
never be (and never was)*; counting all such cells 
gives us an (invariant) estimate of how many cells 
are available to represent dynamically changing 
information (but only an estimate - whole regions 
may be decoupled from the rest of the automaton 
because they are surrounded by a wall of decou­
pled cells**; a local counting wouldn't reveal this). 

If we concentrate on the active (as opposed to 
the decoupled) cells, we can distinguish various 
kinds of activity, and try to associate conserved 
quantities with each. As a simple I-dimensional 
example, consider 'dislocations' propagating in a 
regular background pattern of cells. Using the rule 
(6) again, consider the sequence of steps shown in 
fig. 1 (light and dark squares stand for O's and 1 's 
respectively; dislocations are triplets in a back­
ground of pairs and are outlined for emphasis). In 
this evolution, the number of such 'signals' is the 

• 
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same as the number of blocks of cells we start off 

with the form .. . /;'b •• , and is conserved. 
If two such dislocations collide, we know that 

they can ' t just completely stop moving. Proof: if we 
tried to invert the evolution, we wouldn't know 
when to start the signals moving again. In fig . 2, 

the following quantity is the same for every pair of 
consecutive time-steps: 

( # of cells in blocks of form: : : :: : : :) 

+ ( # of cells in blocks of form 
.. . c. c . . . ) 
.. d.d .. . 

(8) 

The first term counts the number of moving sig­

nals, and so could be thought of as a 'kinetic­
energy' analogue. The second term accounts for 
the disappearance of this 'K.E.' during a collision, 
and so could be considered a potential-energy 
analogue. 

* [f.t; is the global rule that applies to the solid blocking, and 
f" to the dotted blocking, then S, + 1 = !,u,,(S,)) describes the 
evolution using a time independent rule. By including a small 
amount of positional information in the state of each cell , this 
rule can be written in the form( I) . 

Fig. 2. 

6. First-order RCA 

Rather than continue to analyze RCA in order 
to discover conservation laws, we will now proceed 
to construct a class of automata that all obey a 
very simple local conservation law: the total num­
ber of l's never changes, and neither does the 
number of O's. 

The trick we will use is quite general , but it will 

be illustrated in 2 dimensions with 2 states per cell. 
Fig. 3 shows a Cartesian lattice of cells , divided 
into 2 x 2 blocks of cells. We treat each 2 x 2 block 
as a conservative-logic[3] gate, with 4 inputs (its 
current state) and 4 outputs (its next state). These 
'gates' are interconnected in an entirely uniform 
and predictable manner - in applying the rule to 
the 2 x 2 blocks, we alternate between using the 

solid blocking in this diagram for one step, and 

then using the dotted blocking for the next*. Fig. 

r~~ ~YmrW ""T~" "T- r-­

"".~Y, ,,, .Lw.,, " AJ~W ( '" 1! 
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Fig. 3. 
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DO --. 00 
DO 00 

00 O. 
.0 --. 00 

o. • 0 
• 0 --. O • 

O. --. O. 
O. O. 

•• --. •• O. O. 

•• •• •• --. •• 
Fig. 4. 

4 shows an example of a conservative rule (one that 
conserves I's and O's) that is reversible. In the case 
of all O's or all 1 's, there is no choice, they remain 
unchanged. Any rotation of one of the blocks on 
the left is mapped onto the corresponding rotation 
of the result to its right - this rule is rotationally 
symmetrical, and these are all of the possible cases. 
Since each distinct initial state of a block is mapped 
onto a distinct final state, this rule is reversible. As 
will be shown later, the automaton corresponding 
to this rule is universal. 

One could easily have written down an example 
of a rule that conserved I's and O's, but that didn't 
always map a distinct initial state of a block into 
a distinct final state - such a rule would be conser­
vative, but not reversible. As the corresponding 
automaton evolved, it would forget all sorts of 
details about the initial state, but it would always 
remember the numbers of I's and O's. * Thus the 
existence of an interesting local conservation law 
does not depend on the rule being reversible! 

In the language of digital logic, a gate from 
which it is possible to construct any boolean func­
tion of any number of input variables is a universal 

• For each gate (block), we can ten after each step how many 
possible predecessors the result-block has. Thus we can count 
exactly how much information is lost at each step. 

**The BBMCA models space as being uniformly filled with 
gates, and so a connection is already apparent. 

gate. If a logic gate is not universal, then no 
interconnection of such gates can be a computer. 
Thus the only candidates for universal CA's in the 
scheme described above are those whose rule corre-
sponds to a universal logic gate . 

In order to promote the CA rule of fig. 4 as a 
link between classical mechanics and computation, 
I will first discuss Fredkin's Billiard Ball Model 
(BBM) of computation [3] - a classical mechanical 
system that can be used to do digital computation . 
It will then be easier to discuss this rule, which I 
call the BBMCA - a purely digital model of com-
putation which is closely related to the BBM . 

7. The billiard ball model of computation 

The BBM is a classical mechanical system, and 
obeys a continuous dynamics - positions and ve­
locities, masses and times are all real variables. In 
order to make it perform a digital computation, we 
make use of the fact that integers are also real 
numbers. By suitably restricting the initial condi­
tions we allow the system to have, and by only 
looking at the system at regularly spaced time 
intervals, we can make a continuous dynamics 
perform a digital process. In this case, we begin 
with a 2-dimensional gas of identical hard spheres. 
If the center of a sphere is present at a given point 
in space at a given point in time, we will say that 
there is a 'I' there, otherwise there is a '0' there. 
The I's can move from place to place, but their 
number never changes. 

The key insight behind the BBM is this: every 
place where a collision of finite-diameter hard 
spheres might occur can be viewed as a boolean logic 
gate **. What path a ball follows depends upon 
whether or not it hits anything - it makes a deci­
sion. 

To see how to use this decision to do boolean 
logic, consider fig. 5. At points A and B and at time 
t/, we either put balls at A, B, or both, or we put 
none. Any balls present are moving as indicated 
with a speed's'. If balls are present at both A and 
B, then they will collide and follow the outer 

... 
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A1 

81 

Fig. 5. 

AB 

A8 

AB 

AB 

outgoing paths. Otherwise, only the inner outgoing 
paths will be used. At time t = ti , position A is 
a 1 if a ball is there, and 0 otherwise (similarly for 
position B). At t = tc, the four labeled spots have 
a ball or no ball- which they have is given by the 
logical function labeling the spot. For example, if 
A = I and B = 0, then the ball coming from A 
encounters no ball coming from B, and ends up at 
the point labeled "A and not B". A place where a 
collision might occur acts as a reversible, universal 
[3] I-conserving logic-gate, with two inputs and 
four outputs. A path that mayor may not contain 
balls acts as a signal-carrying wire. Mirrors 
(reflectors) allows bends in the paths. In order to 
be able to use the outputs from such a collision­
gate as inputs to other such gates, we need to very 
precisely control the angle and timing of the col­
lisions, as well as the relative speeds of the balls. 
We make this simple to do by severely restricting 
the allowed initial conditions. Each ball must start 
at a grid point of a Cartesian lattice, moving 
'along' the grid in one of 4 allowed directions. See 
fig. 6. All balls move at the same speed. The time 
it takes a ball to move from one grid point to 
another we call our unit of time. The grid spacing 
is chosen so that balls collide while at grid-points. 
See fig. 7. All collisions are right angle collisions, 
so that one time-step after a collision, balls are still 
on the grid. Fixed mirrors are positioned so that 
balls hit them while at a grid point, and so stay on 
the grid. See fig. 8. By using mirrors, signals can be 

~ --.... . ...- .... , ,,, :'\. 

1,\ \1 l' \ 
I. . I 
I 
\ 

Fig. 6. 

Fig. 7 

I 
/ 

.,. .... - .... ,.,-- .... :'\. :' ~()\I .,lI't 
\ / \ / ..... - ", . '- -" . 

. . 

Fig. 8. 

Fig. 9. 

routed and delayed as required to perform digital 
logic. The configuration of mirrors in fig. 9 solves 
the problem of making two signals cross without 
affecting each other. (Notice that if two balls come 
in together, the signals cross but the balls don't!). 
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Mirrors and collisions determine the possible 
paths that signals may follow ('wires'). In order to 
ensure that all collisions will be right-angle col­
lisions (and not head-on, for example, which would 
take us off our grid) we can label all 'wires' with 
a rrows, and restrict initial conditions and inter­
connections so that a ball found on a given 'wire' 
always moves in the labeled direction. 

Thus our universal gates can be connected as 
required to 'build' a computer. Computations can 
be pipelined - an efficient 'assembly-line' way of 
doing things, where questions flow in one end and 
finished products (answers) flow out the other, 
while all the stages in between are kept busy. 
Reversibility turns out not to be a great 
hindrance - unwanted intermediate results can be 
mostly 'erased' by copying the answer once you 
have it, and then running the computation back­
wards to get rid of everything but a copy of the 
inputs. 

This then, in brief, is the BBM. Kinetic energy 
is conserved, since all collisions are elastic. Mo­
mentum is not conserved, since the mirrors are 
assumed to be fixed (infinitely massive) . 

8. The 88M cellular automaton 

When viewed only at integer time-steps, the 
BBM consists of a Cartesian lattice of points, each 
of which may 'contain' a 0 or a I , evolving 
according to a local rule. It would therefore seem 

to be a straightforward matter to find a CA rule 
that duplicates this digital time evolution. 

Unfortunately, the most direct translation of the 
BBM into a CA has several problems. First of all, 
to have separa te states of a cell to represent 4 kinds 
of balls (4 directions) an empty cell and a mirror, 
and to have the balls absolutely conserved (as they 
are in the original BBM) would require a standard 
"change the center cell" rule with 6 states per cell , 
and a 17 cell neighbourhood. Such a rule has a very 
large number of possible configurations for its 
neighbourhood, which makes it unwieldy . More­
over, many of these configurations involve such 
events as head-on collisions, which were disallowed 
in the BBM - a CA rule, however, should be 
defined for all configurations. It is not at all clear 
how to extend the BBM rule to these extra cases, 
and still have it remain reversible and 'energy' 
conserving. 

At the expense of making collisions cause a 
slight delay, we can get away with the very simple 
rule of fig. 4, which involves only 2 states per cell 
in a 4 cell neighbourhood, is reversible, and con­
serves the number of ones (and zeros) in all cases. 

The ~B -- B~ (and rotations) case in fig. 
4 is the one that causes an isolated' I ' to propagate 
in a straigh t line, in one offour directions (depending 
on which of the four corners of its starting block 
you put it in) . See fig. 10. The legend "solid" or 
"dotted" below each of these automaton 
configurations tells you whether the grouping of 
cells into blocks for the next application of the rule 

:r"'......... ··'~"~1, ........ " "",...... , .... 'v.· , ........... 1'............... , ...... 

~ ~ ~ 

,"Mvl'"'' 'ww~"'_' wowlMv., ""v·l 
~ ~ ~ ~., .w .. ,·.w.·.·.·, ... . ".". W.w. "'''''~''''~:~ 
~ . . !. '" . I 

, .... ,. ,.~j .. , .. w ••••• ""L"" ",,,,JhW'" ,,~J >.i ... ,,, ... """,1, .. ,... ! N. ".. .·. w.·.· W.,~ w.~~"'~, lv._ 

dotted solid dotted 

Fig. 10. 
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Fig. II. 

is indicated by the solid or the dotted lines. In 
the diagrams, a 0 is shown as an empty (blank) 
cell , a one is shown as a fill ed-in cell. Since 
B: ~ B: (and ro tations) , a square of fo ur 
ones straddling the boundary of two adj acent blocks 
will be stable- we will use such squares to construct 
mirrors. See fig I I. The four I 's straddle two dotted 
blocks hori zontally, then two solid bl ocks vertically, 
and then two dotted again . Since ~~ ~ ~~ 
(and rotations) , pairs of travelling ones perform 
a billiard-ball type colli sion. See fig . 12. In all of 

:-,. .. 

t'" ·'~ ti f .. +" ::~+~:~.w.vl 

I'''' [>r<:' ,wI"''' ""1 
i......::;I~ wi , . ::::k: ,w'1 

dotted 

these fi gures, the paths the ones were originally 
following have been lightly drawn in, to show that 
the 'and ' case shown results in an outward dis­
placement, just as in the 88M. (Unlike the 8BM, 
there is a delay in such a collision, which we' ll have 
to worry about in synchronizing signals). Finally, 
~= ~ ~= (and rotations) permits the re­
fl ection of double signals by a mirror. See 
fi g. 13. The 'mirror' consists of two adjacent 
stable squares (notice that a square is stable no 
matter what you put next to it - its 

'. , "'- 1 ~, .... ,.... ."""~'VN" . ......... :::i 1 I ",,-I 
.... ,"', ........ ·•·.· .• ·.,-."w." M=~ 

dotted solid 

Fig. 12. 
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Fig. 13. 

'decoupled'). Again, the signal path has been 
lightly drawn in. After each reflection such as that 
shown above, the signal has been delayed by a 
distance of one block along the plane of the mirror 
(in this picture, the signal winds up one block­
column behind where it would have been had it not 
hit the mirror). 

• We can tell how many steps a signal will take to traverse 
a given path (from one position where the signal is moving 
freely to another) by simply drawing the path joining the two 
points (including all points that may be visited by at least one 
'I') and counting how many cells are on the path. 

2-dclay 

In the BBM, such a reflection would cause no 
horizontal delay. We can compensate for such 
extra delays, as well as add any desired horizontal 
delay of 2 or more blocks. See fig. 14. 

Suppose we want to arrange for two signals to 
collide, with the plane of the collision being hori­
zontal. If we get the two signals aligned vertically 
and they are approaching each other as they move 
forward, they will collide properly. We can 
adjust the time it takes one or both signals to 
reach a given vertical column by using delays such 
as those in fig. 14*. 

Fig. 14. 

, 
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In order to allow signal-paths to cross without 
interacting, we use signal timing. By leaving a gap 
long enough for one signal (2 blocks) between all 
signals, we need only delay one of the paths by 2 
blocks along the plane of the collision we' re avoid­
ing, in order to allow the signals to pass each other 
harmlessly. This gap is also enough to allow us to 
separate parallel output paths from a collision. See 
fig. 15. After the coll ision (fig. 12) the upper path 
already has a I-block horizontal delay relative to 
the lower path . The mirror introduces a further 
I-block delay, and so the upper signal passes 
through the timing-gap left in the lower signal 
path. With the addition of some extra syn­
chronization and crossover delays, any BBM cir­
cuit can now be translated into a BBMCA circuit. 
Since the BBM has been shown to be a universal 
computer, the BBMCA is also . 

There are many rules similar to the BBMCA 
that are also universal - for example, if we take the 
BBMCA rule of fig. 4 and modify it so that for 
each case shown, the result (right-hand side) is 
rotated 90-degrees clockwise on the 'dotted' steps, 
and counterclockwise on the 'solid' steps (i.e. 

'The idea for this BBMCA variation arose out of a 
di scussion with Tommaso Tolfo li . 

0-1 1-0 0-1 1-0 
0 -1 1-0 • -I 1-0 
0-1 1- 0 0-1 1-• 
0 -1 1-0 0-1 1-0 

. 0 DO d . 0 O. DO -+ . 0 on otted steps, and DO -+ DO 

on the solid steps, etc.) then we get another rule 
that is also computation universal. Its universality 
can be shown in a direct manner by using this rule 
to simulate the BBMCA (this rule can simulate a 
given BBMCA computation isomorphically using 
eight times as much space, and four times as much 
time)* .. 

9. Relationship of BBMCA to conservative logic 

The collision-gate of fig. 5 has two inputs and 
four outputs. If we wish to consider it to be a 
conservative-logic gate (one that conserves both O's 
and I 's) then we must regard it as a gate with four 
inputs and four outputs, two of the inputs being 
constrained to always be zeros. 

The gate upon which the BBMCA is based also 
has four inputs and four outputs. Is there some 
connection here? Let us redraw the BBMCA rule 
in a different form (see fig . 16). The mapping of 
input variables onto output variables of the 
BBMCA has been redrawn as if the inputs all 
arrive and leave in a vertical column. If we use this 
correspondence to draw the four possible cases 
with a = d = 0, drawing D for 0, • for I , and 
showing each input/output case, we get an evo­
lution (see fig. 17) which is logically the same as the 
coll ision gate. Thus the BBMCA rule of fig . 4 can 
be regarded as a completion of the collision-gate to 
a (reversible) conservative-logic gate! 

a -I 1-A 

ab AB becomes 
b -I 1- B 

cd-CD c -I 1- C 

d -I 1- D 

Fig. 16. 

0-1 1-0 0-1 1- · 
0-1 1- • • -I 1-0 
II -I 1- 0 • -I 1-0 
0 -1 1-0 0 -1 1-• 

Fig. 17. 
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10. Energy in the BBMCA 

In the BBM, the kinetic energy is proportional 
to the number of moving I's. In the BBMCA, if we 

let P x.y. t.1 /2 = Ct,y. t - ct.y, t - I, then Lxy(P ;,y.t. 1/2/ 2) 

counts the number of moving ones (each moving 
one disappears from one cell, and appears in 
another, so Lx},p 2 - which counts how many places 
change - would count each moving one twice) . 

The ones that aren't moving are at those places 

tha t were a one at t - 1, and still are one at time 
f. Thus the number of stationary ones is 

L xyCx.y,tCx,y.t_I ' A complicated way of writing the 
(constant) total number of ones is 

2 
E - '\' P x,y,t- I/2 + '\' 

t·1 /2 - L... - -
2

- L... CtCt _ l · 
xy xy 

(9) 

During a collision, some of the 'kinetic-energy' 
changes into 'potential-energy', and then it 
changes back again. * 

Since (9) is a constant for any rule for which 
L xyC;.y.t is constant, it is not possible to derive the 
particular rule from this expression. We might (for 

example) introduce the rule into (9) by using it to 

eliminate Ct (thus writing E as a function of Pt.1 /2 

and Ct _ I) and see if we can push the mechanics 
analogy further . 

Using number-of-ones to play the role of energy 
in BBMCA circuits and considering circuits for 
which we have only a statistical knowledge of what 
the different inputs will be, elaborate thermo­
dynamic analogues can be established, but this will 
be discussed elsewhere. Although the overall sys­

tem has a single deterministically evolving state, 
from the point of view of small pieces of the 
system, their inputs may appear random. 

11. Conclusion 

The laws of nature are the ultimate computing 
resource - the most efficient computation imag-

• One can think of mechanical models of the BBMCA for 
which the two terms of (9) are proportional to the physical 
kinetic and potential energy of the system midway between two 
steps. 

inable would make the most direct possible use of 
the physical interactions and degrees of freedom 
available. Physical quantities and concepts would 
have a direct computational interpretation. Com­
puter scientists cannot hope to find the right 
quantities to use to talk about efficient com­
putation until they have models of computation 
that are much closer to fundamental physics. Re­
versible Cellular Automata are offered as a step 
towards this end. 

Appendix A 

A second-order, reversible, universal automaton 

This appendix describes another BBM-type au­
tomaton. As before, we begin with a 2-dimensional 
cartesian lattice, this time with 3 states per cell, 
which we can designate as - 1, 0, + 1, and which 
we will draw as ' \' , blank, and ' j' respectively in 
diagrams. 

The time evolution will be given by 

c t.y, t + I = I( c {x.y}.t) - Ct,y.t _ I, where I (c {x,y}. t) is a func­
tion that 'looks' at the 3 x 3 neighbourhood with 
cx .y as its center cell, and' -' is taken mod3 . 

For each possible configuration of the neigh­
bourhood, I will return a val ue of - 1, 0, or + I. 
Just as head-on collisions never arise in BBM 
computations, many configurations of this RCA 
need not arise in order to 'build' a universal 
computer. We will leave these cases undefined­
each choice for these undefined cases defines a 
distinct universal RCA . 

An isolated ' j' or ' \ ' will correspond to a travel­
ling billiard ball - if only the cases defined here 
arise, the number of such 'balls' will be conserved. 
An isolated 'I' will propagate along a positively 
sloped diagonal- its evolution will be governed by 
the following cases: 

000 000 
000 0 /0 
000 000 

/00 000 0 /0 
000 000 000 
000 00/ 000 

000 
/00 
000 

000 
00/ 
000 

000 
000 
0 /0 
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all return a '0' as the value for /; 

00/ 000 
000 000 
000 /00 

both yield a value of 'I' (i.e. + I) . A sample time 
evolution (using halftones to show a cell's contents 
at time t - 1 and solid lines for time t, with 

diagonals lightly drawn through all cells) is shown 
in fig . 18. Intuitively, this rule at time t tries to 
make the '/' travel both forwards and backwards 
along its diagonal- subtracting away a ' /' where it 
was at time t - 1 just leaves a '/' in the forwards 

direction. 
We define this rule to be rotationally symmetric. 

It will be helpful to adopt the following con­
vention: the 90-degree clockwise rotation of 

000 
-> / is 

000 

/00 

\ 00 -> \. 

000 

000 

Inversions are defined analogously. Thus an iso­

lated ' \ ' will follow a negatively sloped diagonal 
path if the propagation of signals is governed by 
the cases: 

000 000 /00 0 /0 
-> 0, 

000 0 /0 000 000 

000 000 000 000 

000 
-> / 

000 

/00 

(and rotations and inversions) . 

Fig. 18. 

For compactness in writing the complete rule, 
we adopt the convention that inversions as well as 
rotations of the cases given are mapped onto the 
corresponding inversions or rotations of the result 
given . 

These cases become zero: 

\\\ \\0 \\0 \\0 \\0 \\/ \\/ \ 0\ \ 0\ \ 0\ \ 00 \ 00 \ 00 

000 000 /00 /00 //0 000 /0/ 000 /00 /00 000 /\0 1\1, 
/ / / //0 000 00/ 00/ / /\ /\ \ /0/ 000 00/ /00 000 000 

\ 00 \ 00 \ 00 \ 00 \ 00 \ 00 \ 00 \ 00 \ 00 \ 00 \ 00 \ 00 \ 00 

/0\ /0\ /00 /00 /00 /00 /00 /00 /0/ /0/ / /\ //0 //0 ' 
000 00/ \ 00 \ 0/ 000 00/ % all 000 00/ 000 000 00/ 

\ 0/ \ 0/ \ 0/ 00\\ 0\\ 0\ 0 0\ 0 0\ 0 0\ 0 00\ 00\ 00\ 00\ 
000 /0\ /0\ 000 000 000 000 000 /0/ 0\ 0 00\ 000 000 ' 

/0\ \01 000 000 all 000 00/ % 0\ 0 000 00/ 000 00/ 

00\ 000 000 000 /\ \ /\ \ /0\ 
00/ 0\ 0 000 /0\ 000 /0/ 000 

000 000 000 \ 0/ \1/ \\1 \0/ 

These cases become one: 

\ 00 \ 00 \ 00 \ 00 \ 0/ \01 \ 0/ \1\ 0\ 0 0\1 0\1 0\1 
/\0 /00 /00 /00 /0\ /00 /00 /00 /\0 \ 00 00\ 000' 

\10 /\0 /00 /0/ 00/ 000 00/ 000 \10 /00 000 /00 

00\ 000 000 000 000 000 000 

/\0 000 000 /\ \ /\0 /\0 1\1 
\10 /00 /0/ \1/ \10 \1/ \10 

(plus rotations and inversions) . There are 2617 

undefined cases. 
Using this rule, a mirror is shown in fig . 19. We 

needed to define certain cases just to allow a mirror 
to remain unchanged when no signals are nearby. 
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Fig. 19. 
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A signal bouncing on a mirror is shown in fig. 20. 
(Notice that there is no horizontal delay, as there 
was in the BBMCA). If this signal had been shifted 
one column to the right, it would have passed the 
mirror unaffected. We put some mirrors near 
places where signals might collide, so that (with its 
small neighbourhood) this rule can simulate an 
attractive collision - the signal paths will be dis­
placed inward in a collision, rather than outward 
as in the BBM. See fig. 21. (If a signal arrives on 

Fig. 20. 

Fig. 21. 

, 

,. 
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just one path, it goes through without any displace­
ment). Two such gates, back to back, can be used 
to make signals cross over without affecting each 
other. See figs. 22 and 23. 

Since all collisions occur without any delay 
along the plane of the collision, considerations of 

synchroniza tion are very similar to those in the 

Single one case 

Fig. 22. 

Two ones case 
Fig. 23. 

BBM. The proof of this automaton's universality 
is essentially the same as for the BBM. 

To give another example of a universal second­
order RCA, we can begin with the BBMCA rule. 
If f~ is the global rule that applies to the solid 
blocking and changes an entire configuration into 

the next configuration, and similarly f" applies to 
the dotted blocking, then we can describe the 
BBMCA evolution by 

S, + 1+ S' _I = f(S,) , (\0) 

where S, + I + S, _ I is taken to be the configuration 
obtained by taking the cell-by-cell sum (mod 2) of 

S,+ I and S'_I , and f (S,) = !s(S,) + fiS,) is also 
such a sum. 

(10) can be rewritten in the form (4) with a 3 x 3 

neighbourhood and a dependence on the parity of 
the center cell's position (parity of x + y). In a 
similar manner, any invertible CA rule can be 
wri tten in the form (10), and in the form (4) if it 
is locally invertible. 
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SIMULATING PHYSICS WITH CELLULAR AUTOMATA* 

Gerard Y. YICHNIAC 
MIT Laboratory for Computer Science, Cambridge, Massachusetts 02139, USA 

Cellular automata are dynamical systems where space, time, and variables are discrete. They are shown on two-dimensional 
examples to be capable of non-numerical simulations of physics. They are useful for faithful parallel processing of lattice 
models. At another level, they exhibit behaviours and illustrate concepts that are unmistakably physical , such as 
non-ergodicity and order parameters, frustration , relaxation to chaos through period doublings, a conspicuous arrow of time 
in reversible microscopic dynamics, causality and light-cone, and non-separability. In genera l, they constitute exactly 
computable models for complex phenomena and large-scale correlations that result from very simple short-range interactions. 
We study their space, time, and intrinsic symmetries and the corresponding conservation laws, with an emphasis on the 
conservation of information obeyed by reversible cellular automata. 

I. Introduction 

In 1948, von Neumann embarked on an ambi­

tious project: to show that phenomena as complex 

as life - the survival, reproduction, and evolution 

of complex forms of organization - can be reduced 

in principle to the dynamics of many identical, very 

simple primitives capable of interacting and main­

taining their identity . First, von Neumann consid­

ered the interaction of vortices and particles in 

suspension in some "primordial soup". Obviously, 

such a model was intractable, so, following a 
suggestion by Ulam, he adopted a fully discrete 
approach: space, time, and even the dynamical 

variables were defined to be discrete. 
The resulting cellular-automaton theory de­

scribes a universe consisting of an homogeneous 

array of "cells". Each cell is endowed with a finite 

number of states, and evolves in discrete time 

according to a uniform local transition rule. The 
rule can be seen as a function whose arguments are 
the states at time t of the neighboring cells (and 
possibly the state of the considered cell itself) and 

* This work was supported for its major part by an IBM 
post-doctoral fellowship, and also by grants from DARPA (No. 
NOOO 14-75-C-066 I and NOOOI4-83-K-OI25), and from NSF 
(No. 82143 12-IST). 

whose value is the state of the considered cell at 

time t + I. The rule is uniform in that it is the same 

all over the array. Since all the cells "compute" 

their new state simultaneously, cellular automata 
are often seen as a paradigm of distributed com­

putation [55]. Dyson [15] and Bernstein [4] have 
given lively accounts of the surprising success of 

von Neumann's enterprise [7], a self-reproducing 

cellular-automaton that anticipated the discovery 

of the duplicative function of DNA. 
Further uses of cellular automata in biology 

have been numerous (for a bibliography, see Kauf­
mann [3 I D. The very name "Life" for the famous 
cellular automaton that John Conway invented in 
1970 [21] sti ll reflects the biology-motivated origin 

of cellular automata. The similarities between 

cellular-automaton behavior and that of many 

physical systems are also quite suggestive. In this 
paper, I shall examine how these similarities have 

and can be exploited in order to apply cellular 
automata to physics. (Other discussions can be 
found in these proceedings.) 

There are several ways one can think of using 
cellular automata to simulate physics. I found it 
useful to distinguish between the three following 

approaches: 
(i) Cellular automata as mere computational 

tools. This viewpoint is motivated by the following 

0167-2789/84/$03.00 (c) Elsevier Science Publishers B.Y. 
(North-Holland Physics Publishing Division) 
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facts. In today's fastest general-purpose comput­
ers, signals spend more time and dissipate more 
heat in wires than in processors [28]. Furthermore, 
the latter become less expensive than the former. A 
computer architecture that aims to maximize the 
density of active elements at the expense of that of 
wires leads precisely to the cellular-automaton 
layout of identical processors·. For this reason, the 
existing and planned hardware cellular-automaton 
machines [56] are attractive parallel computational 
resources for many lattice models of physics. 
Moreover, in a cellular-automaton simulation of 
these models, the topology of the simulated object 
is reproduced in the simulating device. In contrast, 
in a general-purpose computer simulation of a 
lattice system, the data relative to sites i and i + 1 
have no particular reason to be stored in neigh­
boring memories. 

(ii) Cellular automata as fully discrete dynamical 
systems. In this approach, cellular automata are 
relevant to physics only insofar as dynamical 
systems are relevant to physics. 

(iii) Cellular automata as original models for 
actual physical phenomena, possibly competing 
with existing continuum models. 

These approaches are ranged in order of depth 
and ambition in the use of cellular automata to 
simulate physics: a purely ancillary role in the first 
one, a fundamental one in the third. The second 
category stands in an interesting intermediate pos­
ition: discrete dynamical systems, in this view, 
attempt not to simulate specific physical phenom­
ena but rather to embody general physical ideas··. 
A given cellular automaton defines its own discrete 
universe. It turns out that many of these cellular­
automaton universes are inhabited by beings that 
are most often seen in the theoretical physicist's 
menagerie, such as symmetries and conservation 
laws, a conspicuous arrow of time in reversible 

• In that sense, a cellular automaton is nothing but an 
array-processor with a few bits rather than a whole 
floating-point variable at each site. 

o. Cellular automata have also been used, in this approach, 
to illustrate ideas from chemistry, viz., the study by Greenberg, 
Green and Hastings [24] of the reaction-diffusion equation. 

microscopic dynamics, order parameters and non­
ergodicity, nonseparability, causality and Iight­
cone, relaxation to chaos through period doub­
lings, and, most instructively, the appearance of 
complex phenomena and large-scale correlations 
resulting merely from a very simple short-range 
interaction. This second approach aims at what 
Stan Ulam has wonderfully called "imaginary 
physics" as opposed to "real physics," the object 
of approaches (i) and (iii). 

These three approaches have an important 
common feature that is unique to fully discrete 
systems. They provide a third alternative to the 
classical dichotomy between models that are sol­
vable exactly (by analytical means) but are very 
stylized, and models that are more realistic but can 
be solved approximately (by numerical means) 
only. In fact cellular automata have enough ex­
pressive power to represent phenomena of arbi­
trary complexity, and at the same time they can be 
simulated exactly by concrete computational 
means: actual runs by a simulating device like 
CAM [56] are an exact implementation of the 
mathematics, and they are automatically free of 
numerical noise since discreteness is a defining 
component of the model itself. In other words, we 
have here a third class: that of exactly computable 
models. To appreciate the originality of this type 
of modeling, one should keep in mind that there is 
no attempt here to solve any given equation, in fact 
cellular automata do not engage in any numerical 
processing, they merely perform simple space­
dependent logical decisions. In other words, this 
third c1~ss aims at digital non-numerical simu­
lations of physical phenomena. 

When faced with a classification like the one 
given above, a healthy reaction is to try to 
invalidate it with examples that cannot fit in any 
specific category, but seem to belong to all. An 
example that comes immediately to mind is the 
Ising model for magnets and binary alloys. In this 
model, the variables are defined at the sites of a 
regular lattice, they take only two values and 
interactions occur between neighboring sites only. 
Replace "lattice" by "array", "sites" by "cells" 
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and "iteration step" by "time step," and you have 
a cellular automaton! Surprisingly enough, this 
seemingly reasonable mapping gives terrible results 
when applied to the equilibrium properties of Ising 
spins. However, cellular automata can do a mar­
velous job if the mapping 

(1 spin, 1 iteration step)I-+(1 cell, 1 time step) 
(1.1) 

is discarded, (and the emphasis is somewhat shifted 
from approach (iii) to the more pragmatic view­
point (i». 

This paper is organized as follows. Conventions, 
symmetry properties, and mechanical ~alogies are 
exposed in the next section. Section 3 contains 
examples of the use of cellular automata as com­
putational tools. The puzzling failure the intuitive 
mapping (1.1) in what seems to be the easiest 
simulation, i.e., that of Ising spins at equilibrium, 
deserves some analysis. Section 4 discusses care­
fully the role in this failure of the discreteness af 
time and ofthe variables. It shows that in a general 
manner this double discreteness prevents an exten­
sion to fully parallel processing of currently used 
serial methods (e.g., Monte Carlo sampling) for the 
computation of averages in equilibrium statistical 
mechanics. Sections 5 and 6 expose approaches (ii) 
and (iii) respectively. Finally, section 7 presents a 
tentative conclusion and some open questions. 

2. Conventions. Symmetry properties and medlani­
cal analogies 

2.1. Counting rules 

This paper is concerned with one- and two­
dimensional cellular automata with two states per 

• These rules hllve beer! called "totalistic" by Wolfram [60]. 
•• BASIC uses the same symbol for assignmlIDt and equality 

and does not distinguish between logical and numerical vari­
ables. The resulting notation is compact but hard to decipher. 
In good old FORTRAN IV the statement reads Y = 0; 
IF(D.EQ.I) Y = I. 

cell, called "0" and "I". Furthermore, we shall 
mostly limit our study to transition rules that 
merely count how many of the neighboring cells 
are in state "I", but do not care about the location 
of these cells. For cellular automata with n neigh­
bors, there are only 2ft + I such "counting* rules," as 
opposed to 22" possible rules. Naming the rules is 
an exercise subject to practical constraints: a name 
should be as explanatory as possible, short, free of 
ex-otic characters, and start with a letter in order to 
be a legal filename accepted by most computer 
systems. Here is a possible convention: the rule 
name is made of a letter followed by digits. The 
letter refers to the type of neighborhood and the 
digits to the numbers of ones in the neighborhood 
for which the rule returns a one. We shall use here 
predicate calculus, as expressed, to fix ideas, in the 
BASIC computer language. Let N, S, E, W, NE, 
NW, SE, SW (far the neighbors), and C (for the 
center cell) be the values (0 or I) assumed by the 
cells in the neighborhood, and let Y, or C' + I, be the 
new value of the center cell that the rule returns. 
Let us start with one dimension and let 0 = E + W 
designate the number of ones among the left and 
right neighbors. Consider now for example the 
"mad 2" rule, that assigns the state zero if the two 
neighbors are in the same state and one otherwise. 
This rule can be defined by the BASIC statement 

Y=(O=I) 

which is understood as follows**. In the brackets 
stands a predicate that can be either true (1) or 
false (0) according to whether or not 0 = I. The 
whole statement assigns the truth value (0 or J) of 
the predicate to Y, the state of the center cell at 
time t + 1. Now we shall name the rule "01," a 
shorthand of the predicate. Similarly if now the 
center cell is included in the neighborhood 
(T = E + W + C), a new "mod 2" rule is defined as 

Y = (T = 1 OR T = 3) 

and called "T13". (Rules 01 and TI3 have num­
bers 90 and 150, respectively, in Wolfram's con­
vention [60].) 

I 
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Looking now at the two-dimensional square 
lattice, we can count the cells in state one in a given 
neighborhood and introduce the variables 

Q=N+S+E+W, V=Q+C 

and, including the corners, 

H=Q+NW +NE+SE+SW and 
M=H+C. 

The names of these variables are not totally 
arbitrary. The neighborhood consisting of the cen­
ter cell and its nearest neighbors is often referred 
to in the literature on cellular automata [2] as the 
von Neumann neighborhood and as the Moore 
neighborhood when the next nearest neighbors are 
included. Hence the letters V and M (cf. also the 
Roman numeral meaning for V). The letters D, T, 
Q, and H stand for the initials of 2, 3, 4, and 8 in 
French (H is also the 8th letter of the alphabet.) 

We shall see in the next section examples of 
two-dimensional cellular automata on the hexa­
gonal lattice where each cell has six contiguous 
neighbors. Cellular-automaton rules on this lattice 
can in fact be simulated by rules in the Moore 
neighborhood by deleting two opposite corners, say 
NW and SE. Let X be the number of cells among 
the six neighbors that assume state one 

X=N+NE+E+S+SW+W 

and Z = X + C that quantity when the center cell 
is included in the count. Notice that we can also 
obtain a tessellation of the square lattice with 
Y -shaped patterns and thus simulate the honey­
comb lattice (on which each site has three immedi­
ate neighbors). We cannot, however, simulate 
cellular-automaton rules on this tessellation in a 
uniform way because we would need to remove an 
odd number of cells in the Moore neighborhood. 

We shall also consider in section 5 rules that do 
not belong to the class of counting rules but to an 
immediate generalization, that includes rules where 
the values of Q and H for which Y = 1 depend on 

the state C of the center cell. "Life" is such a rule, 

Y = «H = 2 AND C) OR (H = 3» , 

which can also be written as 

Y = «C = 0 AND H = 3) OR 
(C = 1 AND (H = 2 OR H = 3))) 

and denoted by the concatenation H3H23. Rules 
of this type can be called "double-counting," there 
are 210 and 218 of them in the von Neumann and 
Moore neighborhoods, respectively. 

2.2 Reversible rules 

A rule is said to be reversible if it is backward 
deterministic, i.e., if each configuration (or set of m 
configurations for rules that are mth order in time) 
has a unique predecessor. There is a simple way, 
due to Fredkin, to construct a wealth of reversible 
rules. Just take any ruleJinvolving n states per cell, 
note the value it returns and subtract from it, in 
modulo n arithmetic, the value that the center cell 
assumed at time t - 1: 

C'+I = J(neighborhood at time t) - C'-I (mod n). 
(2.1) 

This relation can be solved uniquely for C' - I, even 
ifJis not invertible, and this feature makes the new 
rule reversible. Notice that for n = 2, the sub­
traction modulo 2 is simply the exclusive OR 
Boolean operation. The new rule in now second 
order in time, but it can be made first order by 
including in the present the states of the past, i.e., 
by endowing each cell with n 2 states. In section 5 
these reversible rules will be noted by appending an 
R to the names of the rules J of which they are 
made. 

Notice that the rules constructed with (2.1) are 
not only reversible, they are also time -reversal 
invariant: a sequence of configurations can be 
obtained in reverse order with the same rule, 
simply by inverting the two last configurations. 
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Not all reversible rules are invariant under time 
reversal. For example, the rule where the center cell 
takes the state of its W neighbor (Y = W) gi:netates 
a . global shift toward the right. The past can be 
exactly recovered, not using the rule, however, but 
by (Y = E) instead. For the arguments concerned 
with the conservation of information, simple re­
versibility is all we need. For example, many 
reversible rules with special simple initial condi­
tions evolve into what seems to be a totally random 
regime, despite the forward and backward deter­
minism of the dynamics. The simplicity of the 
initial condition is of course still present in the 
obtained pseudo-chaos. It has only diffused into 
many-cell correlations·. Also, attractors are not 
allowed in the realm of reversible rules. These rules 
cannot exhibit the fascinating self-organizing be­
haviour discovered by Wolfram [60], since this 
effect requires mergers in their evolution. These are 
precisely the mergers that permit the non-reversible 
rules to circumvent the second principle of thermo­
dynamics and create order from chaos, (a feat also 
performed by "Life"). On the other hand, when 
closer analogies with mechanics are the issue, 
time-reversal invariance is crucial. For instance, a 
rule like (Y = W) always shows "in what direction 
the time flows". But for time-reversal invariant 
rules, this is true only when the cellular automaton 
is "out of eqUilibrium and relaxes towards it"; once 
the system has thermalized, the conspicuous time­
arrow has disappeared. It reappears, however, 
in the opposite direction, if two consecutive 
configurations are inverted, i.e., if "all the veloci­
ties are reversed," in an exact realization of 
Loschmidt's paradox [12]. 

Furthermore, the second-order system (2.1) 

• In "real physics," a diffusion into many-body correlations 
is irreversible, because of the macroscopic nature of possible 
measurements (with the exception of spin-echo experiments, 
that actually involve one-body operators only, see [40, 1] for 
lucid discussions). In cellular-automaton experiments, on the 
other hand, microscopic degrees of freedom ean be accessed 
easily. In particular, the encoding of an initial condition can be 
extracted out of the many-cell correlations simply by applying 
the reverse rule, a striking illustration of the importance of the 
exact computability of cellular automata. 

makes two consecutive configurations act some­
what like a point in a phase-space, in which many 
of the results of classical mechanics still hold. This 
is for example the case of Liouville's theorem: the 
absence of mergers together with the discrete struc­
ture of the phase-space make the density of points 
invariant in a reversible evolution. This encourages 
further analogies. Like in mechanics, reversible 
rules have' as many conserved quantities as vari­
ables that describe the initial conditions [34]. We 
also ex~t that some of these invariants are more 
important than others and assume that one of 
these is an "energy" that generates the evolution in 
a way Hamiltonians do in mechanics. For more 
results on "the statistical mechanics of cellular 
automata," see the detailed article of that title by 
Wolfram [00], and also section 5.1 of this paper. 

2.3. Growth inhibition: convex confinement and 
shape-confinement 

Many cellular-automaton patterns grow without 
limits out a single seed of one in a background of 
zeroes. Pot many other rules, on the other hand, 
patterns remain confined inside fixed boundaries. 
There are two types of such boundaries: they can 
be convex or they can have more general shapes. 
Let us concentrate first on rules in the von Neu­
mann neighborhood, for which the convex shapes 
are rectangles. Some rules confine patterns to the 
smallest tectangle that encloses all the ones of the 
initial conditions. We can call such rules convex­
confined, or rectangle-confined. If furthermore the 
ones do not even fill concavities, i.e., if they do not 
explore the convex islands and peninsulae of zeroes 
of thickness larger than one cell, the evolution can 
be said to be shape-confined. The contrast is man­
ifest for initial conditions of ones forming hollow 
or L-shaped patterns. By a direct consequence of 
their definition, counting rules of the form 
Qdh ••. , d" and double-counting rules of the form 
Qd" ... , dnQd., ... , d:" are rectangle-confined if 
all the d" .. . , dn are larger than one, and they are 
shape-invariant if these digits are larger than two. 
Likewise, in the Moore neighborhood, counting 



G. Y. Vichniac / Simulating physics with cellular automata 101 

rules Hdl>"" dn and double-counting rules 
Hd ..... , dnHdi, ... , d~. are convex-confined if the 
d ... .. , dn are all larger than four, and shape-
invariant if they are larger than five. In the hexag­
onal lattice, these exclusive thresholds are three 
and four. These results hold also for the reversible 
extensions of these rules by (2.1). 

Confined cellular automata lend themselves to 
an easier systematic study, their available space 
being finite by their own intrinsic laws, and not as 
a consequence of the necessary finiteness of the 
practical means of their simulation. Their available 
time is finite as well, of course: the finite number 
of cells, states per cell, and bits that encode the rule 
do not contain enough resources for an infinite 
non-periodic evolution. Using here again the 
mechanical analogy, we shall call the finite period 
the "Poincare recurrence time" when the rule is 
time-reversal invariant. 

2.4. Intrinsic symmetry properties 

Some rules can be transformed into others by 
simple "intrinsic" symmetry operations that in­
volve the states, rather than space and time. For 
example the value of rule T023 is the binary 
complement of that of Tl, and we write this 

Tl = T023 . 

If one asks now what rule Tl looks like when it 
is applied to the binary complement of a 
configuration, it looks like T(3 - I), that is T2, 

Tl(neighborhood) = T2(neighborhood) . 

We can call T2 the conjugate of Tl. Some rules 
have special properties under conjugation: they can 
transform into themselves, or into their com­
plement, but most rules are just like Tl and 

• It is not surprising that the model chosen by condensed­
matter physicists to challenge the astronomers' traditional view 
that long-range forces are necessary to account for the spec­
tacular long-range order of spiral galaxies [50) is a simple 
generalization of cellular automaton. 

lack proper symmetry under conjugation. In the 
first case we call the rule even (or invariant or 
self-conjugate), and in the second case we call it 
odd under conjugation. Among the counting rules 
in the von Neumann neighborhood, for example, 
the even rules are Q2, Q04, Q024, Q13, Q123, 
Q0134, V05, V23, V14, V1234, VOI45', and V0235; 
the odd rules being VOI2, V013, V024, V034, as 
well as their conjugate-complement V345, V24S, 
VI35 and V125. We shall see in section 5 that the 
reversible versions of some of these even rules have 
remarkable behaviours. These intrinsic symmetry 
properties can readily be extended to cellular auto­
mata with more than two states per cell. 

3. Cellular automata as computational tools 

3.1. Dynamic and static models 

The available hardware resources [56] for the 
simulation of cellular automata can also find most 
natural applications to those areas of physics 
where the discretization of space, rather than being 
an artefact of a numerical simulation, is a feature 
of the physical system itself (e.g., crystals, for their 
lattice-vibration independent properties), or has 
already been made an integral part of an estab­
lished theoretical model (e.g., lattice-gauge field 
theories and lattice-gas molecular dynamics). The 
models of statistical mechanics that involve a 
regular lattice with local interactions between sites 
are begging for cellular-automaton simulations. 
The analogy is particularly faithful for dynamical 
models. In fact, a wealth of numerical results in the 
study of percolation [14], nucleation, condens­
ation, coagulation [6] and transport properties in 
molecular dynamics [49] are obtained by simu­
lating on a general purpose computer the time 
evolution of systems that are actually instances of 
simple cellular automata or immediate gener­
alizations of cellular automata.... Cellular­
automaton machines are of course particularly 
appropriate for the treatment of these models 
(provided that the effects of the two other 
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discretizations - time and variables - are fully un­
derstood and tamed, see section 4). For static 
models, on the other hand, the correspondence is 
less immediate, because cellular automata deal 
with initial-value problems, whereas in the classical 
equilibrium statistical-mechanical theories, there is 
no natural microscopic dynamics, and one is pri­
marily interested in averages over configurations of 
static thermodynamical quantities. To be sure, 
these quantities can be obtained by dynamic relax­
ation methods, thanks to the ergodic theorem, but 
cellular automata can also be useful even if one 
wishes to stick to the time-independent approach. 
In that case, cellular automata should reproduce 
the successive steps of some iterative method, 
where the automaton's "time" plays the role of the 
iteration index rather than the physical time. CellU­
lar automata (with probabilistic transition rules) 
can update very efficiently the lattice 
configurations of Monte Carlo samplings (pro­
vided some traps are avoided, see section 4). 
They also could be a help in performing the 
bloc-spin transformations defined in the real-space 
renormalization group methods [43]. 

3.2. Experiments with voting rules: percolation and 
nucleation, metastability vs. unstability, spinodals 

"Voting" rules·, i.e., counting rules that assign 
"0" or "I" according to the "popularity of these 
states in the neighborhood," yield genuine nucle­
ation effects or relax to a percolating stable state. 
More precisely, rules that return a one if the cc;unt 
of that state among the neighbors is above a given 
threshold always lead to the growth of clusters of 
one of the "species" (0 or I) until a stable 
configuration is reached. When they are applied to 
a random initial configuration, these voting rules 
behave in a way that depends extremely sharply on 
the initial concentration Ii of ones, we are then in 
presence of a critical phenomenon. The voting rules 
fall into two major classes. For a first category of 
them, cluster growth is limited for all the values of 

* These rules are instances of "threshold functions" used in 
the theory of neural networks [31, 37, ~I, 23, 54]. 

p; the clusters of the species in minority shrink, but 
the asymptotic configuration always contains sur­
viving minority islands (that in some cases oscillate 
with period 2 - which is the highest possible period 
for voting rules [23]). Above a critical value Pc of 
their initial density, the ones percolate in the final 
stable configurations, i.e., they form a connected 
path that crosses the whole space. Under Pc, per­
colation occurs for the zeroes. The second major 
class contains convex confined rules (see section 
2.3); During the first few steps, many I-cells tum 
to "0", being surrounded by too few I's. But local 
high~den8ity fluctuations in the initial distribution 
of ones initiate the growth of clusters of I's. The 
growth consists in filling concavities, and halts 
once the convex shapes are reached. But if two 
clusters touch (or almost touch) they create new 
concavities and the growth goes on and forms a 
larger single convex cluster. For p > Pc, the clusters 
merge and the whole array turns to "1" after a 
small number of steps there is nucleation. For 
p <Pc, the clusters stop growing before they can 
meet. They remain separated by a sea of O's. To be 
sure, on an infinite lattice, this O-phase is metasta­
ble: an exceptional fluctuation can create a very 
large cluster that will grow for ever, feeding on 
isolated small clusters. In the thermodynamic limit 
the fate of the array does not depend on p; yet this 
equilibrium configuration of aliI's can be reached 
through two very different dynamical regimes: the 
O-sea is unstable for p > Pc, but the region 
o < p < Pc corresponds to a metastable coexistence 
line between the 0- and the I-phase, the value Pc 
playing the role of a spinodal point. See color plates 
in Toffoli [56], this volume. In fact this 
classification of voting rules according to their 
percolating or nucleating nature corresponds also 
to an important structural difference. 

A simple-majority vote is possible only for an 
odd number of voting cells, since this leads to an 
even number of cases, ranging from an unanimous 
"0" vote to an unanimous "I" vote. For example 
V345 (also called VGE3, to show that the count of 
one states is greater or equal to 3 among the 5 
neighbors) is balanced between the three cases 
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v = 0, 1,2 and the three cases V = 3,4,5. In that 
sense Z4567 (alias ZOE4) and M56789 (alias 
MOE5) are also simple-majority rules. It turns out 
that these are the rules that yield percolation. Due 
to the 0-1 symmetry of the problem, or to the fact 
that simple-majority rules are also self-conjugate 
(see section 2.4) the critical concentration must be 
!. Voting rules with an even number of voting cells 
lead to a necessary bias: the mid-point cases 
(Q = 2, X = 3, and H = 4) must be assigned to zero 
or one (we exclude here tie votes, i.e., special 
prescriptions for the mid-point cases, and shall 
examine them in section 4 in the context of the 
Ising model). Such biases can be seen as external 
magnetic fields in the "0"- or "I-direction": an 
oscillating motion of the domain walls is observed 
when the direction of the bias is switched, e.g., 
when Q34 and Q234 are applied by intermittence. 
A bias can alternately be incuded by changing 
simple-majority rules and shift the threshold as in 
V2345 (alias VOE2). These biased voting rules 
yield nucleation with finite critical concentration. 
A second shift, as in Vl2345 (alias VOEl) removes 
the convex confinement and leads to nucleation 
even for an infinitesimal initial concentration of 
ones (Pc = 0+). Values of the critical concentration 
of ones for the voting rules are given below (the 
fractions (m /n) indicate that the corresponding 
rules involve an inclusive threshold of m ones 
among n neighbors). 
von Neumann neighborhood 
QOE2 (2/4) Pc = 0.133 (nucleation) , 
QGEI (1/4) Pc = 0+ (nucleation) , 
VOE3 (3/5) Pc =! (percolation) , 
VOE2 (2/5) Pc = 0.0822 (nucleation) , 
VOEI (l/5) Pc = 0+ (nucleation); 

Moore neighborhood 
HGE4 (4/8) Pc = 0.333 
HOE3 (3/8) Pc = 0+ 
MGE5 (5/9) Pc = ! 

(nucleation) , 
(nucleation) , 
(percolation) , 

• These structures are of particular interest because they 
display in 3 dimensions trioritical [26] and tetracritical [27] 
points. 

MOE4 (4/9) Pc= 0.250 (nucleation) , 
MOE3 (3/9) Pc=O+ (nucleation); 

hexagonal lattice 
XOE3 (3/6) Pc = 0.266 (nucleation) , 
XOE2 (2/6) Pc=O+ (nucleation) , 
ZGE4 (4/1) Pc=! (percolation) , 
ZOE3 (3/7) Pc=0.191 (nucleation) , 
ZOE2 (2/7) Pc=O+ (nucleation) . 

Obviously, the conjugates of the complements of 
these rules yield nucleation of zeroes for the same 
critical concentrations of zeroes. These numerical 
values were obtained using Tofi'oli's Cellular­
Automaton Machine (CAM) [56], a simulator of 
size 256 x 256. The standard deviation (1/256) is 
small enough and allows a fast and accurate 
determination of the critical concentrations. 

Variations on the voting rules can be introduced. 
Voting rules in the von Neumann neighborhood 
have other interesting sets of initial configurations 
besides the random one. These are made by "dop­
ing" at random sites a very small amount of zero­
and one- "impurities" on a matrix consisting of a 
checkerboard pattern of zeroes and ones. This 
background is doubly "grey" because its states 
oscillate between "0" and "1" both in space and 
time. We see then the dynamics of two species (the 
clusters of zeroes and ones) on a grey background. 
This is in contrast with most other cellular auto­
mata with two states per cell where, as in "Life," 
patterns of ones evolve on a background of zeroes. 

Another way to modify the voting rules is to 
complement the ballot of some of the voters. For 
example this method can introduce anisotropies by 
counting, in the von Neumann neighborhood, the 
Nand S neighbors with.a "sign" opposed to that 
ofE and W. This leads to metamagnetic structures, 
that are ferromagnetic in one direction and anti­
ferromagnetic in the perpendicular direction·. A 
similar procedure can be applied in the Moore 
neighborhood, giving a rule that aligns the future 
state of the center cell to those of the nearest 
neighbors but opposes the states of the next nearest 
neighbors. This rule corresponds to frustrated 
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bonds [58]: after some transient time the cellular 
automaton keeps on oscillating between the two 
ground states. In the next section we shall see 
similar oscillations that are pure cellular­
automaton artefacts and do not correspond to any 
physical frustration. 

4. Simulating the Ising model with cellular 
automata 

4.1. Motivations and main result 

It is natural to ask how well cellular automata 
simulate the Ising model if only because of the 
strong resemblances between these two systems. A 
second compelling motivation to investigate the 
Ising model is the recent intense interest in con­
structing special purpose machines dedicated to its 
simulation. These machines [47, 30] are based on a 
pipeline architecture and therefore involve serial 
processing at the bottom level. But the expected 
availability of cheap VLSI circuits [57] forces us 
to ask whether it is possible to simulate the wan­
dering of Ising configurations through the canon­
ical ensemble with a simultaneous updating of all 
the spins at each iteration. The answer to this 
question is negative. A simultaneous updating of 
two contiguous spins necessarily yields wrong re­
sults, and the mapping (Ll) must be discarded for 
this problem. We can instead endow· each cell with 
four states in order to accommodate for two spins, 
or equivalently, perform an alternate updating of 
every second spin in a checkerboard pattern [11]. 
The practical consequences of the invalidity of the 
intuitive mapping (l.l) are benign: the maximal 
speed of a computation is still a half of what it 
would be if full parallelism were allowed. However, 
the theoretical import of this bound is surprising 
and reveals an irreducible serial constitutive fea­
ture in any systematic sampling of configurations 
in equilibrium statistical mechanics for discrete 
systems. In other words, the wandering of 
configurations does not correspond to any obvious 
cellular-automaton dynamics, despite what one 

might intuitively expect following the approach 
(iii) me.ntioned in the introduction. 

4.2. Global energies and local measurements 

The Ising model for magnets and binary alloys 
involve a regular lattice on each site i of which is 
a spin (//. The spins are the only variables of the 
model, they can take two values (up and down) or 
( + 1 and - 1) and interact with their nearest 
neighbors only, via the Hamiltonian 

H = -J L u;l1i' 
(/,i) 

(4.1) 

where .the sum is taken over neighboring pairs 
only. If J > 0, the spins tend to be parallel and 
ther:e isa ferromagnetic phase below the critical 
temperatu~e Te. When the system is in equilibrium 
with a reservoir at temperature T, the mean value 
of an observable A in the canonical ensemble is 
given by 

(4.2) 

where the sum is taken over the set of all possible 
configurations of spins, k is the Boltzmann con­
stant and the normalization denominator is the 
partition function 

Z(T) = L e-H({a;})/kT • (4.3) 
(aJ 

The Monte Carlo approximation reduces the 
enormous number of terms in (4.2) to an "im­
portance sampling" [42] of the configurations ac­
cording to their total energy, given by (4.1). In 
principle, each iteration should include the com­
putation ofthe r.h.s. of (4.1) in order to obtain E', 
the global energy of the configuration of step t, but 
a simple trick permits the economy of this com­
putation. The trick consists in flipping 0!le spin 
only at each step. This enables a simple local 
observation of the energy change Ali at site i 
to yield the global energy increment E'+ I - E' 
(the quantity that actually enters the sampling 
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criterion), 

(4.4) 

(Measurements of the local energy changes also 
suffice for the multi-spin-coding technique [11], 
where several noncontiguous spins are updated at 
the same time, since the mechanism of this method 
can be simulated exactly by a standard serial 
scanning.) Consider now a Monte Carlo com­
putation on a two-dimensional square lattice. With 
an orderly sampling of the spins, starting from the 
NW corner of the lattice and sweeping towards the 
SE, the energy change LlEj at site i involve spins that 
have already been updated as well as "old spins" 
that are contemporaries of the considered spin. 
Specifically, 

where r(C) is a random number updated at each 
site. (In the multi-spin-coding technique, E and S 
are also taken at t + 1). We use here the notation 
of section 2 but now of course the variables take 
their values in the set {j, !} instead of the set {O, I}. 
Notice also that in (4.5) t + 1 means after an entire 
sweep over the lattice, not after an elementary step, 
as in (4.4). 

4.3. The feedback catastrophe 

The parallel processing of all spins can be readily 
simulated with standard serial computational re­
sources. Just write a Monte Carlo code, and mod­
ify it in order to make LIE; depend now on the old 
spins only: 

C+ 1= f(N I , WI, C, EI, SI, r(C), T) . (4.6) 

One then observes the following catastrophe, start­
ing with an aligned configuration at, say, T = 0.8Tc 
and a ferromagnetic coupling J > O. During the 

* A similar computer experiment has recently been reported 
by B. Hayes, Scientific American, October 1983. 

first sweeps, some spin and flip back, very much 
like in a standard Monte Carlo calculation, but as 
soon as two spins (or cells) with contiguous corners 
flip during the same sweep, a spurious checker­
board pattern starts to grow, leading eventually to 
an oscillation between the states of maximum 
energy i.e., the two ground states of an anti­
ferromagnet. * The stability of the oscillating mon­
ster is evident from (4.6). Each spin up, surrounded 
by four spins down, will flip in order to align with 
its neighbors, which themselves will also flip, doing 
"the same reasoning." This occurs whenever f 
stands for the Metropolis or the "heat bath" 
algorithm [5]. One might ask whether there exists 
a transition rule J, not necessarily related to the 
Monte Carlo practice, that would avoid the feed­
back and yet give the correct averages (4.2) for a 
very large number of iterations. 

4.4. An argument against full parallelism 

We shall show now that there is no such rule. 
For simplicity, let us consider the one-dimensional 
case. What we are after is in fact a probabilistic 
cellular automaton. The look-up table for a proba­
bilistic cellular automaton does not return a new 
state C + I but rather a random value. It takes the 
general form 

{n, j, j), (j, j, D,· .. , (!,!. D}r+{a(T), b(T), ... , 
h(T)} . 

This maps the eight possible neighborhood values 
to eight random variables. In the case (j, j, j), for 
example, the center spin will be up with probability 
a(T) and down with probability I - a(T), and 
similarly for the other neighborhood cases. 

Let us consider now a lattice of N spins all in the 
up state 

... iiiiiiiiiiii"', 

along with the very large set of all configurations 
of a given magnetization M, say M = 2/3. In these 
configurations the up spins are twice as numerous 
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the down spins: 

... ii lit! it! it!···, 

···iiiiUiilit!···, 

... iiiiiiii !U!"', 

The configurations of this set have a very large 
range of excitation energies. Nevertheless, at a 
temperature such that a(T) = 2/3, they are all 
populated from the ground state with the same 
transition probability W, 

W = a(T)2N/3(1.- a(T))N/3 , (4.7) 

regardless of the particular value of their total 
energy. A probabilistic cellular-automaton rule 
dictates how many spins will flip, but not how 
many domain walls will be formed. In other words, 
even if a transition rule can "know" the energy cost 
of flipping one spin, it has no way to determine the 
global energy of the obtained configuration. There­
fore these cellular-automaton transitions cannot 
conserve the Boltzmann distribution, a necessary 
condition [59] to sample the canonical ensemble at 
equilibrium·. The argument is quite general, it 
does not depend on our particular choice of 
temperature and configurations. The cellular­
automaton transitions will not populate 

* The reader familiar with reasonings based on the principle 
of detailed balance [5] might like first to reduce the eight 
random functions a(T), ... , h(T) to only three independent 
transition amplitudes (using the symmetries of (4.1»; and then 
to construct a set of pairs of configurations for which micro­
reversibility yields constraints that cannot be simultaneously 
satisfied by the three amplitudes. This is a straightforward task, 
too tedious though to be reproduced here. 

** This argument alone is not'enough. One should also prove 
the non-existence of sum rules that would express the sum over 
the spins of a two-body operator in terms of one-body oper­
ators (e.g., the virial theorem in mechanics). This is in effect 
what has been done above. 

tI am thankful to Henri Orland for suggesting the following 
analysis and for writing a computer code to check its validity. 

configurations according to their Boltzmann fac­
tor, which depends on the global energy. This is 
again because the transition rules have no access to 
that global energy, but only to the local energy 
changes, and when contiguous spins are updated 
simultaneously, the relation (4.4) ceases to be valid, 
(essentially because energy is a two-body 
operator··, by (4.1)) . 

4.5. Role of discreteness 

The Ising spins take only two values. This 
clearly plays a role in the fact that the feedback 
oscillations are not damped. The only way for a 
spin not to be up is to be down; the model does not 
have room for "almost-up" spins. Similarly, one 
suspects that the discreteness of time has also an 
effect in this behaviour. This in fact can be studied 
in a quantitative way with the help of a model 
continuous both in time and in the values of the 
spins, where, so to speak, discreteness can be 
continuously introducedt. 

Let us rewrite (4.3) in the form 

Z(T) = f I;I dUj()(o} - 1) e-H«(I1,})/kT. (4.8) 

The delta function guarantees that despite the 
continuous notation, this expression is equivalent 
to (4.3). Adapting an idea of Parisi [45, 20] we can 
"soften" the spins and obtain an equation of 
motion for them. First we use the representation 

()(U; - 1) = lim A. 0. e-().14)(I1~ _1)2 
).-+00 V2 (4.9) 

of the delta function as a double Gaussian ex­
tremely peaked at U j = ± 1, but refrain from taking 
the limit ~ -+ 00. The parameter A. that characterizes 
both the height and the narrowness of the Ga\:ls­
sian controls to what extent our model is "two 
states per site." Furthermore, the continuous for­
malism allows some dynamics in the form of 
Langevin's equations of motion 
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(4.10) 

where each spin is made a function of time, r is the 
inverse of a relaxation time, and '1;(t) is a Gaussian 
random variable: 

To be sure, this is not the only possible dynamics 
for (4.8), but it reproduces the wandering through 
the canonical ensemble at t ~ r- I [25]. We now 
discretize the time according to th~ step A t and use 
the simplest two-point formula for the time­
derivative, and when we plug (4.1) and (4.9) into 
(4.8), eq. (4.10) takes now the form 

(1;(t + At) = (1;(t) - Atr( A«(1~(t) - (1;(t» 

+ ~ L (1j(t») + fl(f'1;(t) . T j 
(4.12) 

It should be stressed here that this algorithm 
does not converge exactly to the Boltzmann distri­
bution when At is finite. This is not the only prob­
lem with (4.12). Indeed, from the result of section 
4.4, we can predict that this algorithm is numer­
ically unstable for very large values of A, because 
then (4.12) becomes in fact a cellular-automaton 
rule for the two-state per cell Ising model! Notice, 
however, that in this expression A is multiplied by 
At, thus at vanishing time increments the system is 
stable. In a very general way, as Olivier Martin 
pointed out to me, the feedback catastrophe can­
not occur in the continuous time limit, because the 
transition probabilities vanish with At. 

The numerical meaning of the parameters in 
(4.12) can be assessed by means of the following 
estimates. The parameter A constrains the value of 
each spin around + I or - I, with a Gaussian 
effective potential of depth r A, and the thermal 
noise capable of moving a spin from the well 
centered around + 1 to that centered at .:...- 1 is of 
strength J2r JAt. In the high Tlimit, where we can 
neglect the Hamiltonian term in (1j' a spin can go 

from one well to the other and flip if JITii is as 
large as A. (As both the constraint and the noise are 
Gaussian, it is not surprising that this estimate 
turns out to be well verified). In the low T limit, 
where the Hamiltonian term dominates, the proba­
bility for a spin to flip in the minimal number of 
time steps is wg -I, where g is the number of states 
per spin (i.e., the number of values that a spin can 
assume on the numerical mesh) and w is the 
transition strength, at a given T, between two 
successive spin states. At very low T, w is close to 
unity, and we should not be astonished to see· a 
catastrophe for g = 2! For a value of g as low as 
16 (CAM can accommodate 256 states), the feed­
back seems fully damped. We have checked this by 
observing that the solution of (4.12) behaves in a 
similar manner when (1 is constrained to take one 
of 16 values and when it has a floating-point 
computer representation. 

4.6. Temperature zero and optimization 

The difficulties encountered in section 4 reduce 
to the fact that global thermal equilibrium at finite 
temperature over the whole array cannot be ob­
tained by a cellular-automaton local transition rule 
that follows the mapping (l.l). When, on the other 
hand, the concern is the ground-state properties of 
a system (T = 0), we have in fact a minimization 
problem and cellular automata based on (l.l) can 
prove to be very effective. Take the Ising case 
again. A cellular-automaton rule will produce the 
unwanted feedback only at sites of high local 
energy f.;, but it behaves in a satisfactory way inside 
homogeneous domains. Define now a new rule that 
follows the cellular-automaton Ising rule for 
aligned domains, but ignores it in the checkerboard 
domains of high energy. The new rule will flip a 
coin instead. Physically, it puts these regions at an 
infinite temperature. We observe then a growth of 
the T = 0 domains at the expense of the dis­
locations and the oscillatory monsters. What was 
a weakness for finite temperatures, i.e., the failure 
to satisfy the zeroth principle of thermodynamics 
and obtain a uniform temperature over the array 
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proves to be a strength at T = O. The nucleation of 
cold domains is enhanced while the dislocations 
are locally burned. This method also gives' spec­
tacular results for the fast production of a single 
metamagnetic crystal (see the end of section 3). 

The most interesting zero-temperature problems 
might well be the most difficult ones, that for 
example involve frustrated bonds. The standard 
procedure [32, 33] for the numerical investigation 
of the ground states of such lattices is by the 
simulation of a very gradual scheduled annealing 
with a careful Monte Carlo thermalization at every 
step down in T. If the cellular-automaton method 
could be adapted to this problem, it would be 
substantially faster than the standard method since 
it starts to breed the T == 0 domains from the very 
beginning of the calculation. To be sure, such an 
adaptation could turn to be a very difficult chal­
lenge, since in presence of frustration there is no 
evident local signature of the "good" domains. 

5. Cellular automata as discrete dynamical systems 

5.1. Non-ergodicity and order parameters 

The most remarkable two-state-per-cell count­
ing rule in the von Neumann neighborhood is, in 
my opinion, the Q2R rule. (It is the reversible rule 
constructed on the self-conjugate rule Q2 by For­
mula (2.1». Notice that Q2 is a second way 
(besides Q13) to generalize to two dimensions the 
"mod 2" rule D 1: it assigns a one whenever zeroes 
and ones are in equal number among the four 
neighbors). The new state Y of the center cell that 
Q2R defines can be expressed with the BASIC 
statement· (where CPAST = C,-I) 

Y = «Q = 2):F CPAST). 

By construction, Q2R is time-reversal invariant 
and also rectangle-confined for patterns of ones in 
a background of zeroes. It therefore inherits all of 

* Here again, FORTRAN IV is less compact but easier to 
read: T = 0; IF (Q.EQ.2) Y = I; IF (CPAS'r.EQ.l) Y = 1 - Y. 

the nice properties described in sections 2.2 and 
2.3. The' specific behaviour of Q2R can be de­
scribed as follows: when the initial condition con­
tains solid shapes of ones at t = 0 and t = I, one 
always observes a rapid drop in the number of 
ones. This drop is however limited: the system 
must keep enough ones in order to accommodate 
for the encoding of the initial condition (it must 
"remember it"). After the trans~ent drop, the con­
spicuous arrow of time disappears and the systems 
"thermalizes" at a. nearly constant population of 
ones" typically of 1% of the original population. 
Moreover the'motien of the remaining ones is most 
often limited to very small oscillations around fixed 
patterns. The dynamics of Q2R perform two min:.. 
imization precesses: that of the number of ones, 
and that of their motion. Also, the equilibrium 
patterns often form disconnected islands that from 
time to time grow and exchange information. This 
fact and the frequent formation of genuine clocks 
and counters suggest that Q2R is capable of uni­
versal computation (Le., it can simulate, for special 
initial conditions, the operations of a general­
purpose computer). 

In view of section 2.2, we shall use freely the 
terminology of classical mechanics. The first min­
imization process encourages us to consider the 
number of ones as a kind of potential energy. The 
second one indicates that the potential wells can be 
deep and narrow. The kinetic energy could be 
related to the number of zeroes created in the 
original rectangle: it is zero at t = 1, when the 
potential energy is maximum. Yet, the exact form 
of the analogue of the total energy is not evident. 
Nevertheless we know that this total energy is 
conserved, and we can ask whether or not an 
evolution eventually visits all the configurations of 
that energy, rendering averages over the energy 
surface in the phase-space equivalent to averages 
over very long times. In other words, we ask if the 
rule Q2R is ergodic. The classical ergodic theorems 
guarantee that an evolution is ergodic if it is 
metrically transitive, Le., if the energy surface is 
indecomposable into disconnected manifolds (see 
e.g., ref. {16]). It might seem hopeless to look for 
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the ergodic properties of this cellular automaton, 
since we do not know the form of the total energy, 
let alone the topology of the energy surface in the 
set of all the ,configurations. It is not so. The rule 
Q2R illustrates beautifully the following general 
point. There are two different reasons for the 
decomposability of the energy surface. The first is 
when there exist additional "important exact dy­
namical symmetries" besides energy (Poincare's 
uniform integrals). In Q2R, parity is such a sym­
metry: a dyssymmetric shape never reaches its 
mirror-image, despite the obvious degeneracy in 
energy. A second, and more interesting cause of 
decomposability of the energy surface is the exis­
tence of quantities that become exact constants of 
the motion for an infinite number of degrees of 
freedom only. These are the order parameters, the 
classical example of which is the magnetization. It 
is only in the thermodynamic limit that the mag­
netization of a ferromagnet at 0 < T < Tc is guar­
anteed not to change its sign because of a 
fluctuation. A ferromagnet (described, say, by the 
Ising model) has one order parameter and two 
degenerate ground states. Spin-glasses [46, 52], on 
the other hand, have in the thermodynamic limit an 
infinite number of degenerate ground states, and 
an infinite number of order parameters are needed 
to characterize them. In other words, expressed by 
Hyman Hartman at this workshop, a ferromagnet 
is to one bit of memory what a spin-glass is to an 
infinite amount of information storage and com­
plexity. 

Let us come back now to the Q2R cellular 
automaton and consider the set of initial condi­
tions that, for both initial times, are made of 
rectangles full of ones in a background of zeroes. 
There are the two major cases depending on the 
size a x b of the rectangles. 

(A) a = b or a and b are multiple of 4. The 
cellular automaton starts to lose most of its ones 
but it soon regains them: the motion is periodic 
with a short-period (in time steps, about twice the 
number of cells in the larger side). But as soon as 
the regularity of the initial configuration is per­
turbed by one cell, the period becomes extremely 

long, a manifestation of a long Poincare recurrence 
time. The regular initial conditions correspond to 
the exceptional initial conditions for which the 
motion is manifestly not ergodic (viz., a non­
interacting gas with all the initial velocities parallel 
to the wall of a cubic box). 

It is interesting to observe how the cellular 
automaton encodes the location of the per­
turbation (and its size, in case several cells are 
involved). In many instances the region of the 
original perturbation loses after a few steps all 
traces of its special meaning at t = O. The cellular­
automaton dynamics seems to have forgotten the 
site of the perturbation, but in fact it remembers it 
via a totally delocalized encoding. 

(B) a =F b and a and b are not both multiple of 
4. In that more general case, one observes again the 
rapid drop of the number of ones and soon the 
system stabilizes and oscillates for a larger number 
of time steps around a fixed shape that looks, say, 
like the letter H. When it has apparently exhausted 
all the allowed configurations around that shape, 
it rapidly generates a very large number of ones 
and briefly reaches about 80% of its original pop­
ulation, then it drops again from what appears to 
be the top of a potential barrier, and falls into an 
oscillatory motion about a new shape, say the 
letter X. (A second cycle of identical oscillations 
around the same shape is forbidden: it would have 
a merger at its entry-point, also it would mean 
forgetting the original rectangle. A reversible evo­
lution cannot enter nor leave a cycle.) When the 
size of the original rectangle increases, the number 
of different patterns that host the small oscillations 
in a global Poincare period increases, as does the 
time spent around the individual patterns. In the 
limit of extremely large rectangles, the cellular 
automaton will remain in the first visited pattern 
and not wander through the set of allowed 
configurations. The energy surface of Q2R con­
tains a very large number of deep and narrow 
potential wel1s, separated by high barriers. We 
have thus recovered an important behaviour of 
spin-glasses. The ingredients of this behaviour are 
known to be disorder and frustration. The same 
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ingredients can be recognized in Q2R. First, disor­
der is definitely there. Excluding the trivial fourfold 
symmetry inherited from the rectangular initial 
conditions, the system does not exhibit any order 
when it is at the bottom of a potential well. It 
displays what seem to be random sequences of 
scattered ones. Yet, the patterns can be described 
with a very small amount of information as the 
result of n steps of evolution following Q2R of a 
rectangle of size a x b. This apparent disorder has 
in fact a low algorithmic entropy. This cellular 
automaton appears to be a good laboratory for the 
ideas of Bennett and Chaitin [8, 13, 22]. The anal­
ogy with frustration, on the other hand, is not so 
convincing. It might correspond to the fact that the 
system is reversible but did not start from an 
eigenstate. It will never reach a stable configuration 
(as, e.g., "Life" does), but rather will try vainly 
and forever to satisfy all its bounds. Hyman Hart­
man brought to my attention the fact that although 
Q2R behaves like spin-glasses (Le., according to 
approach (ii», in general cellular automata cannot 
faithfully model all the degrees of freedom of these 
materials (i.e., following approach (iii». The rea­
son is the disorder in a spin-glass is quenched and 
cannot be represented by a uniform cellular­
automaton rule. It turns out, however, that non­
uniform transition rules can readily be imple­
mented by CAM [56]. This brings us back to 
approach (i)! 

5.2. Fractals and relaxation to chaos through period 
doublings 

Wolfram [60] discovered that plots of one­
dimensional cellular-automaton evolutions as a 
function of time often generate beautiful fractal 
[38] figures. Even when no plot against time is 
involved, many two-dimensional cellular automata 
also form scale-invariant patterns. In a general­
ization of "Life" recently devised by Wainwright, 
some simple configurations generate fractal 
flotillas of "gliders." In counting rules, the generic 
form of fractal patterns is always that of multiple 
"Maltese crosses" (a cross on each ofthe four arms 

of which grow three crosses on each of the four 
arms of which grow three crosses ... ). These beau­
tiful figures have been observed in 1965 by Fredkin 
[21] on the "mod 2" rule Q13 and in 1969 by Vlam 
[7] with the double-counting rule QIQOI234 
applied on a single seed. 

The fractals produced by the rectangle-confined 
rule V2R present an additional physical interest. 
Starting with a non-convex pattern of ones at t = 0 
and t = I, the evolution consists in a filling of the 
concavities by Maltese crosses. This evolution is 
first periodic both in space and time. But soon the 
cycles become more and more complicated, the 
doubling of their temporal period occurs, and 
eventually the patterns become chaotic both in 
space and time. Notice that the chaos is not set 
here by varying a parameter, like in the logistic 
mapping [10, 29]. The phenomenon displayed, by 
rule V2R is a relaxation rather than a transition to 
chaos. The double-counting rule VIVR also pro­
duces very long sequences of period doublings of 
oscillating fractal patterns with initial conditions 
made of several seeds forming a sublattice (a con­
struction readily obtained with periodic boundary 
conditions). 

5.3. Local conservation laws, Faraday shields, phase 
velocity, causality and light-cone cooperative behav­
iour, and non-separability 

There exist patterns (e.g., adjacent ones and 
zeroes in two consecutive configurations) that are 
invariant under the evolution of some time-reversal 
invariant rules. Such patterns cannot appear nor 
disappear during an evolution, they are character­
istic of the initial conditions. Margolus, who dis­
covered these effects on rules V05R and V1234R, 
calls them local conservation laws [39] since they are 
related to fixed sites. When such patterns form a 
closed "curve," they partition the array into an 
interior and an exterior region that do not 
influence each other: a perturbation outside of a 
region cannot be perceived inside of it: the invari­
ant curves act like Faraday shields to information 
propagation. Furthermore, when the curves form 
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a regular sublattice (see above), a regime is soon 
reached where they emit wave-trains of zeroes and 
ones the nodes of which travel at a speed larger 
than a cell per time-step (the "speed of light"). 
Such "phase velocities" reveal the undamped cor­
relations that occur over the whole array: distant 
cells do not communicate, yet they seem to 
"know" about each other's state and conspire to 
produce large stable coherent patterns. Despite this 
apparent supraluminal exchange of information, 
causality is of course not violated. Indeed, these 
distant cells all belong to the future light-cone of 
some past event, that constitutes their common 
cause. It is the exact reversibility of the discrete 
dynamics that forbids all forms of damping and 
enables the array to feel the full strength of the 
consequences of this event from the remote past. 
These undamped correlations are a general feature 
of reversible cellular automata: the information 
carried by correlations is always fully conserved, 
even though conspicuous few-cell correlations gen­
erally diffuse, in an apparent irreversible way, into 
many-cell correlations (cf. section 2.2). These very 
stable coherent patterns· are reminiscent of the 
structures produced out of equilibrium by dissi­
pative systems that are driven by external forces 
(e.g., in the Rayleigh-Benard's convection [53]). 
The locally conserved shapes seem to act like 
sources and sinks of energy, despite the fact our 
cellular-automaton dynamics is reversible and the 
array is isolated. This conflict challenges the char­
acterization [44] of a discrete dynamical system as 
"Hamiltonian" by its obeying Liouville's theorem; 
or, alternately, it challenges the usual association 
of large-scale coherent structures and cooperative 
behaviour with dissipative phenomena. 

These correlations that lay dormant for a long 
time and manifest themselves in the most sur­
prising ways can naturally occur whenever the 
initial conditions are not set at random. If spatial 
correlations are present at t = 0, the determinism 
of the dynamics together with the absence of 

*See color plates in Taft'oli [56], this volume. 
**Peres and Zurek [48] have clarified the connection between 

nonseparability and determinism. 

damping carry on the nonseparability of the system 
for an arbitrary length of time. This non­
separability permits in principle a cellular automa­
ton to circumvent (in a rather trivial way, to be 
sure) Bell's theorem [2, 9] and to exhibit certain 
characteristics expected only of quantum systems··. 
(See Feynman [18] for a detailed discussion of 
cellular automata and Bell's inequalities.) 

5.4. More on rule T13: a global conservation law, 
diffusion of the least significant bit, and the hyper­
bolic behaviour of cellular automata 

Let us write the heat equation in one dimension 
in the form 

(5.1) 

where u is the temperature field, C the specific heat 
and K the thermal conductivity. A double integra­
tion of (5.1) over both space and time is reduced 
by Green's formula to a single contour integral 

f( Cu dx + K !: dt) = 0 . (5.2) 

This relation expresses the conservation of heat: 
the difference of heat contained in an arbitrary 
region between two times equals the sum of the 
losses across the boundaries between these times. 
Let us find out now the relevance of this to cellular 
automata. The simplest discretization of (5.1) 
reads, i being the spatial index, 

u:+ I - u: = U:+I - 2u:+ U:_I, (5.3) 

where we took C = K and the discretization steps 
to unity. In modulo 2 integer arithmetic, this is 
nothing but the "mod 2" cellular-automaton rule 
Tl3! Similarly, a central difference discretization of 
the time-derivative in (5.1) would give the second 
order rule D 1 R. These rules can then be said to 
describe the diffusion of the least significant bit. (It 
would be interesting to observe in this manner the 
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turbulence of the least significant digit in the 
resolution of Navier-Stokes equation in modular 
arithmetic.) The derivation of (5.2) from (5.1) 
applies here too, because the heat equation is 
linear - and in the linear domain all the results of 
differential and integral calculus have their exact 
equivalent in the calculus of finite sums and 
differences. Summing (5.3) over both space and 
time yields a cancellation of most terms, an exact 
discrete counterpart of the elementary derivation 
of Green's formula. We then get the single sums 

12 Tz-I 

L (uT2 - uTI) = L (U}z+1 - U}2 - uh + U}I_I)' 
i=11 t=TI 

In modulo 2 arithmetic, this relation equates for 
Tl3 the parity difference between times TI and T2 
of an arbitrary segment of the array to the parity 
losses through the boundaries i = II and i = 12, 

This result extends of course immediately to "mod 
2" rules in higher dimensions. The simple exact 
correspondence between heat and parity of bits 
permits a precise discussion, though in a very 
restricted context, of the question of conservation 
and flux of information. 

We notice here an important limitation of the 
simulating ability of cellular automata. We started 
with a parabolic PDE, but obtained a behaviour 
typical of hyperbolic PDE: the heat equation trans­
mits information with infinite speed (a rather un­
physical feature), but cellular automata produce a 

* To be sure, the same is true with any discrete system, e.g., 
a digital computer, but the finiteness of the speed of propaga­
tion is particularly conspicuous with cellular automata endowed 
with a small number of states per cell. 

** Whereas this view has not affected the current under­
standing of physics, it has motivated original advances in the 
theory of computation, viz., reversible logic, the billiard-ball 
model of computation [19], and a quantum theory of the Turing 
Machine [3]. These results establish direct mappings between 
physical (non-dissipative) systems and general-purpose 
information-processing systems. These mappings (that had for 
long been "proven" not to exist, [4]) are important for the 
efficiency-minded computer designer, since they automatically 
include physical constraints and tradeoffs into a computation 
model. Such mappings are also of great conceptual interest, 
since they permit an accurate transfer of notions and methods 
from physics to the theory of computation [19, 39]. 

heat wave-front that propagates with finite 
velocity·. 

Maybe this limitation could in fact "give a 
point" to the "fundamentalist" approach (iii), 
exposed just below? Cellular automata are here in 
definitive conflict with the continuum modeling, 
but indeed parabolic equations are as a rule ap­
proximate or result from a statistical or macro­
scopic modeling. 

6. Cellular automata as original models of physics 

Until now we have taken the expression "simu­
lating physics" in its weaker acceptations, i.e .• 
computer treatment (section 3), or conceptual ana­
logies (section 5). But "simulating" may be given 
a stronger meaning, as in the sentence "RCL 
electrical circuits can simulate mechanical oscil­
lations". It is this sense of exact correspondence 
that Feynman uses in his article "Simulating Phys­
ics with Computers" [I8]. Trying to use cellular 
automata to simulate physics in this sense is a bold 
approach but is in line with the atomistic tradition 
that advocates taking discreteness seriously (cf. 
Toffoli's "Cellular automata as an alternative to 
(rather than an approximation of) differential 
equations in modeling physics" [57]). This old 
tradition has taken on a modern specialization 
that, stated grossly, sees nature as locally-and 
digitally - computing its immediate future. Fredkin 
has exposed this view·· at this workshop; see also 
the articles by Feynman, Finkelstein, Minsky, 
Wheeler, and Zuse in the proceedings of the 1981 
conference on Physics of Computation, Part II: 
Computational models of physics [35]. 

A major merit of this approach is that it carries 
to its logical consequences the seemingly innoc­
uous statement that "digital computers can simu­
late everything". This view is tacitly endorsed by 
most physicists in their daily intercourse with the 
computer, yet it conflicts with the standard for­
mulation of physics. Almost twenty years ago, 
Feynmann has expressed his concern with this 
conflict. 
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"It always bothers me that, according to the 
laws as we understand them today, it takes a 
computing machine an infinite number of log­
ical operations to figure out what goes on in no 
matter how tiny a region of space, and no 
matter how tiny a region of time. How can all 
that be going on in that tiny space? Why should 
it take an infinite amount of logic to figure out 
what a tiny piece of space/time is going to do? 
So I have often made the hypothesis that ulti­
mately physics will not require a mathematical 
statement, that in the end the machinery will be 
revealed, and the laws will tum out to be simple, 
like the chequer board with all its apparent 
complexities. " 

An awesome thought! But since we have not so 
far come across a cellular automaton that can 
pretend to be an original model of physical phe­
nomena, it is only appropriate to go on with the 
quote: 

"But this speculation is of the same nature those 
other people make - 'I like it', 'I don't like 
it', - and it is no good to be prejudiced about 
these things." 

7. Conclusion 

Cellular automata are definitely capable of vari­
ous levels of simulation of physics. Approach (i), 
defined in the introduction and illustrated in sec­
tion 3, places cellular-automaton hardware 
resources [56] between special-purpose machines 
[36, 47] and general-purpose computers. Because 
of that particular position in the tradeoff be­
tween efficiency (that characterizes the former), 
and versatility (embodied by the latter), 
cellular-automaton machines can be seen as 
general-purpose machines for discrete problems 
with local interactions. The validity of the simu­
lations by cellular automata of space-discrete sys­
tems (lattices) is however conditional to the taming 
of the effects of the two other discretenesses (time 
and variables, see section 4). 

In contrast with standard simulations, cellular 
automata do not only seek a mere numerical 
agreement with a physical system, but they attempt 
to match the simulated system's own structure, its 
topology, its symmetries, in short its "deep" prop­
erties. The exact computability of cellular auto­
mata is a precious asset for the study of these 
properties. For example, there are fundamental 
connections between microscopic laws and global 
behaviour that derive from a system's very revers­
ibility. (Conservation laws, for example, owe their 
existence to the need to keep the memory of the 
past.) To investigate these connections it is im­
portant to have models whose evolution can be 
computed exactly for an arbitrary length of time. 
In contrast, if a computation throws away some 
information about the current state of the system 
(say, by approximating a real variable by its near­
est computer-word representation), it fails to cap­
ture the very information-preserving nature of the 
reversible process one is interested in. 

Furthermore, the originality of cellular auto­
mata as exactly computable models yields novel 
insights into '>bld problems. The ergodic theorem, 
for example, finds its traditional motivation in the 
fact that it equates a quantity deemed impossible 
to approximate (average over time) to a quantity 
calculable in principle with the prescriptions of 
statistical mechanics (average over the energy sur­
face). For cellular automata the order of difficulty 
is precisely reversed (section 5.1): there is a priori 
no access to the geometry of the energy surface; on 
the other hand, the exact measurement of observ­
abies is immediate and the accuracy of their time­
average is only a matter of statistics. In the same 
vein, reversible cellular automata show how non­
separability can be very simply related to damping, 
causality, and the exact conservation of informa­
tion (section 5.3). 

The distinction between approaches (i) and (ii) 
make many simulations by cellular automata a 
guaranteed winner. Either the observables of a 
cellular automaton agree with those of a physical 
system or model, and approach (i) justifies the uses 
of that particular cellular automaton; or, as we saw 
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instances in section 5, a cellular automaton has no 
structural resemblance with any physical system 
but nevertheless exhibits features that are unques~ 
tionably physical. Then approach (ii) demonstrates 
the power and generaHty of concepts which, 
though conceived for a physical problem, cannot 
only be applied but also defined in contexts totally 
unrelated to physics. Entropy is of course the 
classical example of such a concept, and the "suc­
cess story" of its successive extensions from a 
strictly thermodynamical quantity to an arch no­
tion in the foundation of statistics [36] seems 
impossible to match. Yet it appears that with phase 
transition, order parameter, conservation and loss, 
physicists have invented notions that tum out to be 
more powerful than originally suspected. Cellular 
automata indicate that these notions have a 
broader scope because they are ultimately based on 
primitives of computational and informational 
nature - such as counting, labelling, and 
comparing - rather than on specialized aspects of 
physics proper. The physicist who would claim that 
these extensions of meaning are of little use for his 
trade might prove to be less guilty than Oswald 
and Mach in their rejection of Boltzmann's en­
tropy. The computer scientist, on the other hand, 
cannot legitimately ignore the central role that 
physics plays in the theory of computation. But 
this is another story [3, 19, 39]. 

Most of the physical features of cellular auto­
mata presented in this article were obtained by a 
systematic study of a restricted class - the counting 
rules. It is urgent to investigate wider classes 
(double-counting rules, larger neighborhoods, 
starting maybe with self-conjugate rules) in order 
to reveal more of these features. But limiting the 
research to this kind of "physics a posteriori" 
would be a dubious methodology. In a large 
measure, cellular automata have been so far a kind 
of Rorschach test for physicists, who recognize in 
them their pet models. It is equally urgent to 
continue the general investigations on discrete 
modeling. It would be useful, for example, to put 
the mechanical analogies of section 2.2 on a 
sounder ground, say, by constructing a discrete 

Legendre transform that would justify the 
identification of two consecutive configurations of 
a cellular automaton based on (2.1) as a point in 
a phase-s.pace. Also, it would be interesting to 
know whether the characterization of a discrete 
dynamical system as Hamiltonian on the basis of 
its obeying Liouville's theorem is unique, or even 
valid (see section 5.3). Would a criterion based on 
a discrete analogue of the symplectic structure 
define a different kind of discrete Hamiltonian 
systems? Likewise, it is challenging to generalize 
the derivation of global conservation laws (section 
5.4) to nonlinear rules. 

All these questions pertain to the same problem. 
In recent years, many efforts have been devoted in 
order to identify and to the study the phenomena 
that do npt depend on the details of the underlying 
microscopic interactions, but rather on symmetries 
or on universality classes. It is natural to go on the 
next step and to try to find out what are the 
processes, the laws, and the formal structures of 
physics fpr which the continuous nature of space, 
time and of dynamical variables is not essential. 
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CELLULAR AUTOMATA AS AN ALTERNATIVE TO (RATHER THAN AN 
APPROXIMATION OF) DIFFERENTIAL EQUATIONS IN MODELING PHYSICS· 

Tommaso TOFFOLI 
MIT Laboratory for Computer Science, 545 Technology Sq., Cambridge, MA 02139, USA 

Cellular automata are models of distributed dynamical systems whose structure is particularly well suited to ultrafast, exact 
numerical simulation. On the other hand, they constitute a radical departure from the traditional partial-differential-equation 
approach to distributed dynamics. Here we dicuss the problem of encoding the state-variables and evolution laws of a physical 
system into this new setting, and of giving suitable correspondence rules for interpreting the model's behavior. 

1. Introduction 

1.1. Preview 

We shall present a train of thoughts that in 
summary runs more or less as follows. (a) There 
are novel computational resources which on cer­
tain tasks may outperform conventional resources 
by very, very many orders of magnitude. (b) In 
comparing the two classes of resources, it becomes 
obvious that the conceptual development of math­
ematical physics must have been strongly 
influenced by the nature of the available com­
putational tools. (c) The new resources suggest a 
new approach to the modeling and simulation of 
physical systems; in particular, it i~ possible to 
replace the customary concepts of real variables, 
continuity, etc., with more constructive and 
"physically-minded" counterparts. 

1.2 Infinities in mathematical physics 

Mathematical physics, both classical and 
quantum-mechanical, is pervaded by the notion of 

* This research was supported in part by the Defense Ad­
vanced Research Projects Agency and was monitored by the 
Office of Naval Research under Contracts Nos. 
NOOOI4-7S-C-0661 and NOOOI4-83-K-OI2S, and in part by NSF 
Grant No. 8214312-IST. 

t In particular, the elements of T are continuous with respect 
to the topology of Q and commute with the elements of S. 

a "continuum," that is, the set R of real numbers 
with its natural ordering and topology. Maxwell's 
equations provide a typical example. There, space 
is a structure S diffeomorphic to RJ, and the 
electromagnetic field at each point is an element of 
Q = R6, so that the phase space for the whole field 
is QS = (R6)R\ a very uncountable state set! On this 
phase space, we assign a dynamics in the form of 
a group of transformations T (time) indexed by R. 

How do we manage to specify in some construc­
tive way the behavior of a system beset by so many 
uncountable infinities? Part of the answer is that 
we do not deal with the "generic" system. Rather, 
we concentrate on systems having such very special 
properties (e.g., continuity, uniformity, locality, 
linearity, or reversibility - Maxwell's equations 
happen to have all of these properties at oncet) 
that most of the infinities "cancel out," so to speak, 
and we can make some definite qualitative or 
quantitative statements about the system's behav­
ior. Of those special properties, the most important 
for taming infinities is certainly continuity. Intu­
itively, a small uncertainty about the system's 
initial state leads to a correspondingly small uncer­
tainty about its final state, so that we don't have 
to worry about capturing its state with "infinite" 
precision, whatever that may mean. More pre­
cisely, in mathematical physics, even when we 
choose for technical reasons to represent states as 
encoding an infinite amount of information. the 

0167-2789/84/$03.00 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 
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temporal correlations between states introduced by 
the dynamics may be much more finite·. 

In conClusion, in modeling physics with -the 
traditional approach, we start for historical rea­
sons (see below) with mathematical machinery that 
probably has much more than we need, and we 
have to spend much effort disabling or rein­
terpreting these "advanced features" so that we 
can get our job done in spite of them. On the other 
hand, in this paper, we outline an approach-where 
the theoretical mathematical apparatus in which' 
we "write" our models is essentially isomorphic 
with the concrete computational apparatus in 
which we "run" them. Starting from this finitary 
approach, the few infinities that we may stilf want 
to incorporate in a physical theory (e.g., as the size 
of a system grows without bounds) are defined as 
usual by means of the limit concept. However, in 
our approach the natural topology in which'to take 
this limit is that of the Cantor set, rather than that 
of the real numbers. 

1.3. Old and new resources 

Traditional computation, whether by man or 
machine, involves the sequential processing of a 
few dozen or at most a few thousand "objects." In 
symbolic computation the objects are formulas and 
the processing is done by means of derivation rules, 
while in numerical computation the objects are 
finite numbers and the processing entails algebraic 
operations. (At a lilOre microscopic level both 
kinds of computation use set operations On '(Tery 
small sets of symbols; however, both computers 
and people come already hardwired to perfom 

• Cf. a very clear discussion by Everett [2]. The salient point 
is that "the amount of information in a state" is not as 
important a concept as "the amount of correlation betWeen two 
states." While information is measured in a way that has a 
certain amOunt of arbitrariness (it depends on the "gauge" 
chosen), Correlation is a "gauge-invariant," absolute quantity. 

t We call scalar a quantity whose values are naturally ordered 
and spaced on a linear scale - as contrasted to quantities that 
range over an unstructured set. 

t These seginents are of uniform width for INTEGER vari­
ables, and exponentially iricteasing width for REAL ones. 

higher-level -operations on larger data "chunks.") 
Let's consider numerical computation as per­

formed bY' ordinary computers. As long as fast 
computer memory is very expensive (as was the 
case untilrecently), it is necessary to encode infor­
mation about a system's state in a very compact 
way. If an n-bit machine word can encode 2ft 
different states, then; for instance, we use each one 
of these states to represent a different value for a 
scalar quantityt; thus we arrive at the INTEGER 
or REAl!. variables, of, say, FORTRAN, where a 
portion' of! the real line is chopped up into a 
numSer of segments~ and a different binary code 
is assigned to each segment. Representation com­
pacfuess is bought at a price; i.e., processing of 
these variables· requires a rather complex piece of 
machinery called an '~arithmetic/logic unit" (for 
INTEGER: variable}, or a much more complex 
piece of machinery called a ~'floating~point" pro­
cessor (for REAL ones); the latter mechanism can 
be simulated by a lengthy program running on the 
arithmetic/logic unit. The cost of such hardware is 
many orders of magnitudes larger than that of a 
memory word, and thus the customary approach is 
to tin1e-shate it among the few thousand (or 
million) words that make up the memory. 

We shaiI consider now a different approach. 
Today, pure memory, i.e., without input/output 
buffering and access circuitry (such as the custom­
ary binary-addressing tree), is essentially a free 
cominodity: at one bit per micron square, one 
could pack ~ I. Giga (~23O) bits on a I-inch chip. 
Then let's be bold, and decide to use some sort! of 
uriaty - rather than binary - notation to encode a 
scalar variable. That is, the value of the variable 
will be just the number of ones in a certain portion 
of memory; that's extremely lavish - an integer 
that used to occupy a 16-bit word will now take 216 

bits! However, this extravagance in storage buys us 
certain advantages in processing. A scalar variable 
is now just a "bag" of ones (the position of each 
bit is irrelevant: each bit has the same weight), and 
to add two bags we can just "pour" their contents 
together. As we shall explain in detail later, vari­
ables that are encoded in a distributed, local, and 

I 
I 
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Fig. I. The "sum" of two unary-encoded scalar variables, as 
performed by bit-wise ORing. 

uniform way (as our bags of ones) naturally lend 
themselves to processing that is distributed, local, 
and uniform. 

For instance (this is a very naive example - don't 
laugh but read onl), suppose we have two of these 
216-bit words that we want to add. Let's be extrav­

I agant again, and attach a miniature arithmetic/ 
logic unit to each bit. This will be a simple OR 
gate, no more complex than the FLIP-FLOP 
which realizes a memory cell. Then we can proceed 
as in fig. 1.1. After just one propagation delay, the 
result register will contain the "sum" of the two 
words. Note that, in this "sum," l's that are in a 
homologous position in the two words will con­
tribute only 1 - rather than 2 - to the total. Though 
the relative error decreases very fast as the l's in 
the two words become sparse (intuitively, when our 
universe consists mostly of vacuum), this is still an 
approximate and rather inefficient way of doing 
things, and that's why we call the example "naive." 
The important point is that all the processing is 
local. There is no feedback, no carries, no long 
lines that traverse the whole chip and whose capac­
itance we have to charge and discharge. All can be 
done in a fraction of a nanosecond. We wasted 
many powers of two by using unary rather than 
binary encoding; but we recoup many powers of 
two from the fact that in our scheme memory only 
needs local access and thus can be somewhat 
denser, and processing is done locally and thus can 

• A well-known example of a cellular automaton is John 
Conway's game of "life" (cf. Martin Gardner, "The fantastic 
combinations of John Conway's game 'life', .. Scientific Ameri­
can, 213:4 (1970) 120-123). This cellular automaton was shown 
by Bill Gosper to be computation-universal. For a systematic 
introduction to cellular automata, refer to Toft'oli [8). 

be extremely faster. It is this lack of overhead that 
makes our approach attractive for many kinds of 
physical computation, where one deals with sys­
tems that are inherently distributed over spacetime 
and subjected to laws that are local and uniform. 

In the above example we applied local pro­
cessing to a machine word which encoded a scalar 
variable and which would typically represent a 
lumped quantity of a physical model. But lumping 
is usually introduced artificially, in order to adapt 
a problem to the techniques of ordinary numerical 
computation. However, if we are able to do local 
processing at an extremely fine scale, we might as 
well directly construct our models, much more 
naturally, as ones in which variables and parame­
ters are distributed. We shall introduce a quite 
general class of such models and discuss their 
relevance - in the light of the new computational 
resources - for both theoretical and practical 
mathematical physics. 

2. CeDular automata vs. differential equations 

2.1. Generalities 

We assume some familiarity with the concept of 
"cellular automaton"·. 

In the cellular-automaton model of a dynamical 
system, the "universe" is a uniform checkerboard 
with each square or cell containing a few bits of 
data; time advances in discrete steps; and the "laws 
of the universe" are just a small look-up table, 
through which at each time step each cell deter­
mines its new state from that of its neighbors; this 
leads to laws that are local and uniform. Such a 
simple underlying mechanism is sufficient to sup­
port a whole hierarchy of structures, phenomena, 
and properties. Cellular automata provide emi­
nently usable models for many investigations in 
physics, chemistry, and biology, as well as for 
experiments in combinatories and for studies in 
parallel computation [8]. 

Many theoretical results have appeared on cellu­
lar automata. Yet, the fundamental problem (as in 
the case of partial differential equations, of which 
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cellular automata represent a discrete counterpart) 
is to determine the temporal evolution of the!: 
system, and this problem in general does not havt; 
an analytical solution. That is, in order to describe 
the state q, that the system will attain in t time-steps 
starting from a given initial state qo, the only 
general method is to construct one-by-one the 
intermediate states qo,.'" q,_.. i.e., to perform 
numerical integration. Note, however, that b«;c~use 
of cellular automata's intrinsic discreteness, h,::r~ 

numerica.l integration isan eXll;ct proces~ (there a!e 
no truncation or round-off errors to worry aboll.t.), 
and the results that one obtains have thus the force 
of theorems. In other words, any properties that 
one discovers through simulation are guaranteed 
to be properties of the model itself rath~J; that:l; a 
simulation artifact. 

2.2. Physical realization of c(!liuiar aut.omqta 

Much as Gute~berg developed a way to re­
produce in an arbitrary number of copies stqtic 
information-bearing structures such as text, the 
introduction of integrated-circuit technology has 
made it possible to replicate at will dynam,ic 
information-processing str,vctures, such as elec­
tronic circuits. 

There are four main factors that determ~ne the 
cost/performance r~tio of an integrat~ circuit, 
namely, circuit design and, layout, ease of mask 
generation, silicon-area utilization, and max­
imization achievable clock; speed; for a given tech­
nology, the latter is inversely proportional to the 
maximum lengtb of critical signal paths. In teQIls 
of these four para.met~rs, cellular au.tomata, are 
perhaps the computational s,tructures best suited 
for a VLSI realization. In fact, circuit design 
reduces to the design of a single, relatively simple 
cell, and layout is unifo~; the whole mask for a 
large cellu.lar-au.tom.aton ~ray (that is, not only 
the cell.s with their internal connections but also t(1e 
interconn~tions between cells) can be generated 
by a ste})-~n<i-repeat prOcedure; essentially no sil-

• ThO\lM from an abst~act viewpoiJ;lt speed is irr~lev~t, 
imagi,ne l,1aving to do act\l,11.1 gene~c;:s resea,~ch using generations 
of elephants rather than of Drosophila! 

icon area. is wasted on long interconnection lines; 
and, because of the locality of processing, the 
length of critical paths is minimal and independent 
of the number of cells. 

Ignore, f~r a moment, what it is that a cellular 
automatop actulllly computes, and whether it can 
be pqt to any good use. The fact remains that if I 
pqt one-million dolla,rs' worth of cellular­
automaton, VLSI circuits in a black box, and ask 
sOllUlbody to simulate its behavior with one­
miJli.<.>n ~lht...t:s: worth of general-purpose com­
puter, th~i~ sj,mu.la,tipn will be perhaps 1012 (one 
million m~IUon) times" slower. The challenge is, of 
cour&.(:, 1;In(air, because a general-purpose com­
putt;r is oJ?Qmi,zed to do other things, but that is 
e~a.ctl~ t~ powt! In other words, with suitably 
rCl\lj~ ~l,l;1,J)a.r automata one can see things that 
caW,lqt ~ ~n a.ny other way. Whether these 
tbWgs a.J;~. worth seeing - well, that's another 
ma~ter, a,J;l.4< this. paper attempts to make educate<;l 
g~sses. ab,ollt it. ~robably the issue can only be 
~~~g~ a, posteriori. 

II;l ~his sont~x,t, we have constructed a special­
P\l.rpos~ ~llul~J;-automaton machine [9] which, 
although Msed on serial processing, is about a. 
thousand ~hn.es fa,ster that a general-purpose ~om­
put~r progratmned for the same task. Experiments 
tn ~¥~llel dYQa,n;lics using this machin~ have been 
very rewaJil;l;ing (cf. Vichniac [10]), and we have 
cOMrme4 ~t least in a qualitative way the fea­
sibility of the a~proach discussed in 2.3 below·. 

2.3. Po,r.tiqj diffi!rential equations in spacetime 

Let us c.<>n.sider a partial differential equation 
with spac~ a,n~ time-independent parameters; for 
concr~ten~!!s; let us choose the heat equation 

(1.1) 

This is a mathematical model which is widely used 
for two r~asons: (a) it may represent passably well, 
at a certain level of description, the behavior of a 
p,hys,i.c~.1, syste~, ~nd (b) we have a rich catalog of 
techQiques for ~aking 1!JIlthematicai deductions 
fron;l i,t. To what ~xtent these deductions apply to 
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the physical system itself depends on how good 
correspondence (a) is. 

For instance, T(x, t) in (1.1) is a real-valued 
function defined at each point of (abstract) space 
and time. In the solution of (1.1), even if we assign 
T at time t = 0 in a quite arbitrary way (for 
instance, as a sum of step functions), T will be a 
continuous function of x for any t > O. This is 
important, since operationally we cannot measure 
a temperature at a point; we can only measure the 
mean temperature over afinite volume. The corre­
spondence between system and model is then set up 
at this level; after that, a point temperature is 
defined, within the model, as the limit of mean 
temperature as the volume goes to zero. Continuity 
guarantees that this limit exists. 

Now, for volumes that are not too small the 
correspondence between measured mean tem­
perature and its mathematical counterpart works 
well, in the sense that as we make the volume 
smaller the measured values fall within a smaller 
and smaller interval. However, beyond a certain 
point this correspondence breaks up, and the 
smaller we make the volume the wilder are the 
results that we get. This applies not only to con­
tinuity in space but also to continuity in time: a 
temperature probe will reveal larger and larger 
fluctuations as its thermal inertia is made smaller. 

In conclusion, ifeq. (1.1) manages to model well, 
in the large, certain physical systems, it does so not 
because it rests on the axiomatics of the calculus, 
which are not shared with the physical system, but 
because it must somehow capture other essential 
properties of a diffusion process, such as locality of 

. effects, conservation of certain quantities, etc. 
Other mathematical approaches might be as (or 
more) successful at modeling a physical system in 
the large, and at the same time provide a better 
insight into a system's microscopic behavior. 

The great advantage of differential equations, 
such as (1.1), is that we have three centuries' 
experience with methods for their symbolic inte-

• The choice of suitable differences, ostensibly made accord­
ing to definite "correspondence rules," actually requires a 
certain amount of black magic to be really successful; cf. 
Labudde and Greenspan [3] for an interesting discussion. 

gration. As long as all computation had to be done 
by hand, it paid to stylize the physics in a certain 
direction so as to be able to handle the resulting 
mathematics. But few differential equations have a 
closed-form solution anyway, and the past fifty 
years have seen numerical computation make 
bolder and bolder claims at being recognized as an 
essential part of mathematics. 

The moment one gives up symbolic manipu­
lation as a major motive for using differential 
equations, one starts wondering whether one 
should still keep them as the starting point for 
numerical modeling. In fact, they lead to concrete 
numerical computation (e.g., as run on a general­
purpose computer) that is at least three levels 
removed from the physical world that they try to 
represent. That is, first (a) we stylize physics into 
differential equations, then (b) we force these equa­
tions into the mold of discrete space and time and 
truncate the resulting power series, so as to arrive 
atfinite-difference equations, and finally, in order 
to commit the latter to algorithms, (c) we project 
real-valued variables onto finite computer words 
("round-oW'). At the end of the chain we find the 
computer - again a physical system; isn't there a 
less roundabout way to make nature model itself? 

2.4. The origin of scalar quantities 

The present subsection introduces in an informal 
way the main point of this paper. 

A partial differential equation whose indepen­
dent variables are space and time, such as (1.1) 
above, is translated into a finite-difference equation 
by the following process: (a) continuous space and 
time are replaced by a discrete grid, (b) the system's 
state at each point remains a continuous variable 
of the same kind (e.g., real, complex, vector) as in 
the original equation, and (c) derivatives are re­
placed by differences between state-variables that 
are contiguous in space and time·. 

When one translates the finite-difference equa­
tion into a computer algorithm, all one does is (a) 
discretize also the real variables, and further (b) 
restrict them to a finite range. State variables are 
then represented by finite, though quite large, sets. 
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The dynamics of the system is expressed by essen­
tially the same difference rules, with the proviso 
that overflow or underflow will abort the com­
putation; if the state set is made too small this 
aborting will happen so often as to make the 
method useless. 

In tenns of structure, if not of interpretation, a 
cellular automaton is a computational scheme just 
like the above. The only difference is that the 
variables at each point of the grid are only allowed 
to range over a very small set - say, two states per 
cell, "0" and "1." This, however, has profound 
consequences. 

Clearly, with only two states per cell, it is out of 
the question to think of a cell as an approximation 
of a scalar variable (as we did with cells of type 
REAL or INTEGER in FORTRAN), or to think 
of a Boolean expression involving the states of 
adjacent cells as an approximation of a real func­
tion of real variables (as we did with FORTRAN's 
algebra). Intuitively, if a picture's essential features 
are on the same scale as the picture's "grain", then 
we have no picture at all. Now, we could program 
the cellular automaton (by choosing a suitable 
local rule and suitable initial conditions) to simu­
late a conventional difference-equation scheme; 
certain blocks of cells would represent machine 
words, other blocks would realize arithmetic/logic 
units, etc. - but this is very unnatural and ex­
tremely inefficient. Instead, we shall try an 
original- and much more natural- approach. 

As an ai<,i to intuition, we shall think of 1 's as 
"balls" floating in a "vacuum" of O's. Let us 
consider the mean 4!!nsity (Xv over a certain volume 
V, i.e., the fraction of cells - within that 
volume - that are occupied by a ball. (X will always 
be a number between 0 and 1. If V consists of only 
one cell, then (X can take on only two values, that 
is, either 0 or 1. If V consists of-say - 100 cells, 
then the possible values for (X will sample. the 

·Th~ concept of "density" in this discussion can be taken as 
a prototype for other scalar variables such as pressure, tem­
perature, etc. 

t The exact shape of this "sphere" does not matter. On an 
orthogonal lattice one might as well take a cu~. 

I 

interval [0, 1] much more finely: 0.00, 
0.01, ... ,0.99, 1.00. As the size of V grows toward 
infinity, the range of (X approximates better and 
better the unit on the real-line. 

However, in order to speak of a "density field"* I 

we would like to define the density at a point. Let . 
x be a point of the grid, and Vx,r the "sphere"t of 
radius r and center on x. Let (Xx,r be the mea.n I 

density in this sphere. For the moment, we shall 
associate with a point x the whole sequence of 
mean densities (Xx,1> (Xx,2' • , , (without attempting to 
take its limit as r goes to infinity). 

A few remarks are in order. (1) There is a 
trade-off between spatial resolution and resolution 
in the density domain. If r is small, we are looking 
at a definite place, but density is coarse-valued; to 
get finely.spaced values on the density scale we 
have to look at a large volume. (2) Let us take a 
random configuration (of cell states for the cellular 
automaton). For a fixed r, let us study how the 
density (Xx,r varies as we move in space. If r = 1 
(one-cell radius), then as we move x we get for lXu 

a sequence of O's or I's, with no correlation 
between the elements of the sequence. As r in­
creases, the values of (X will move up and down the 
unit interval in a smoother and smoother fashion, 
so that in the limit we can speak of a continuous 
function. This continuity is not imposed from 
above, but arises quite naturally if we observe that 
large spheres centered on neighboring points have 
much overlap, and thus share most tenns infthe 
summation that defines mean density. (3) We s all 
see later that, once we introduce a dynamics, we 
encounter an analogous discontinuity in the s all 
and continuity in the large as we move in time 
rather than in space. (4) Here, we are using unary 
notation to represent the scalar quantity IX, as in 
the example 1.3, but without committing ourselves 
to computer words - or "bags" - of a definite size. 
MoreoveJl, under these circumstances the unary 
representation is not as wasteful as it might appear 
on first sight. When we want high resolution, and 
thus must use large bags, it turns out that most of 
the bits that make up one bag are shared by the 
neighboring bags (cf. (2) above); no matter how 
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large r is chosen, encoding is done at a constant 
cost of 1 bit per bag! (5) At least so far as the 
present static picture is concerned, the properties 
of "density" as defined in our model parallel quite 
closely those of any of the so-called "point vari­
ables" of actual physics (e.g., charge density, tem­
perature); indeed, the latter are "smooth" statisti­
cal constructs based on an actual "granular" 
substrate, and lose their meaning when one, at­
tempting to take a microscopic limit, undermines 
their very statistical base. (6) Finally - and this is 
an essential point - the practical trade-off for using 
small-valued variables interacting only locally is 
that with the same bulk amount of computer space 
and time we can handle a grid that is thousands of 
times finer both in space and in time (cf. 1.3, 2.2). 
Thus, even though the interactions between such 
simple cells cannot but be elementary, we can hope 
to synthesize quite complex interactions through 
massive iteration. We know that the Gaussian 
curve can be handled by the mathematician by 
means of symbols on the paper* and can be drawn 
to any approximation by the numerical analyst; 
but whenever we find this curve in nature we don't 
see the mathematician or the analyst - we see an 
unsteady hand shooting at the same target over 
and over and over ... (cf. Borel [1] for a very 
relevant discussion). 

And now let's introduce some dynamics. To be 
specific, assume that balls interact according to 
some definite local rule but maintain their identity. 
For example, Norman Margolus has constructed a 
very clever "billiard ball" cellular-automaton rule 
of this kind [6] in which balls are conserved, 
undergo elastic collisions, and all travel at the same 
speed in one of four possible directions (except 
during a collision, where they slow down for a 
moment before bouncing back); this rule also 
supports clumps of balls that stick together and act 
as hard mirrors. Margolus' rule is strictly 
reversible - i.e., any configuration for the whole 
cellular automaton has exactly one predecessor (as 
well as exactly one successor as in any deterministic 

* But already its integral is not expressible in tenns of 
elementary functions. 

rule), and computationally universal. Reversibility 
guarantees, among other things, that the relations 
between microscopic and macroscopic behavior 
satisfy the laws of thermodynamics, while univer­
sality implies that in general there is no analytical 
shortcut to the system's dynamics - in other words. 
that there is no better way to tell what the system 
will do than let it do it and watch it! 

Well, if we watch very closely a cellular autom­
aton like this we see a binary computer in oper­
ation. But let's stand a certain distance away, and 
we will see clouds in all shades of gray pulsating 
and swirling and colliding and mixing .... In other 
words, if we associate with each point in space the 
"level of gray," (i.e., the mean density) in its 
vicinity - rather than just the Boolean value of the 
cell at that point - this scalar point-variable 
evolves smoothly, much as if it were "driven" by 
a differential equation. 

Let's see what is involved in this new inter­
pretation. For a fixed r, we have a density field cxx". 
If r = 1, this is a Boolean-valued field whose 
evolution is deterministic and given directly by the 
cellular automaton rule. If r ~ I, we have a scalar 
field whose evolution is nondeterministic; however, 
knowing the field at neighboring points, we can 
reconstruct from the cellular automaton rule the 
probability distribution P(Acx) that the field will 
change by an amount Acx in one time-step. If P is 
very sharp, we have a mechanism that is substan­
tially identical to a finite-difference algorithm. We 
may expect P to be sharp when (a) the rule is 
suitably chosen, (b) the value of r was selected 
within a suitable range, and (c) the value of the 
field is not too close to 0 or to I. (In our inter­
pretation, 0 and I correspond to, respectively, 
"vacuum" and "infinite" density. Near these ex­
tremes our scheme fails to model a 
finite-differential equation because P will not be 
sharp enough to give an essentially deterministic 
result; on the other hand, near the same extremes 
a FORTRAN program will fail because of 
overflow or underflow conditions.) 

In conclusion, we have an efficient com­
putational mechanism based on microscopic prim-
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itiv£'s; in this mockl one can introduce in a r~tner 
natural way,' as derived constructs.: m~c;qs~QPic 
scalar qUl\ntitics which, given an appr{)P,da.temj­
croscopic <:lynamics, behay~ much as the quaqtitj~ 
predicate,d by the diff~renti~I-t'!ql.1l,ltio.Jl rn'pd,~J. T~~ 
two models are .defiqitely (jifferent, put tpp !:lr"!l qf 
overlap permits ()l1e toe~tabl~sh "c{)rre~p.{)~~ep'q: 
rules" between thern, S{) as to arrive lilt crh~ria (PI 
determir.1ing to what extel1t a micrps,c,opic qYA~m~ 
ics is indeed "I,lppropriale" for ~eQerM~p~' ~~ 
desired rnacrQscopic beh.~yio.r. 

2.5. A counting argument 

The variety of differential eql.1atiql1s that 9,~!t ~I!P, 
writ,e is enormous. In a cellular ~utqml:lt(m, PQ ~ 
other hand, once we selec~ tl1.e Jl~i~hbQr\1QP4 AA 
which the new state of ~ell will 9~p~m4, a.JJ t~ 
choice we have for ~ynth~sizin¥ ~he9~jr~q ~~~¥­
ior is in assignin,g entries ~q the look~J,lp t~91~ tt~~t 
defines the local map. Witl,1 few sta~@s. p~~ ~", tm,~ 
choice doesp't seem too wide. For e~lW,.lp~e, if ib.~ 
new state of a cell depel1Qs o~ the Cl.1rJ:e~~ s,t{!.~~ Qf 
the cell itself and., or its imwediate ~~~hpQf§ (~,~y" 
North, ~outh, East, and West) - fiv~ n,~i~l1.~p.r~ tn 
all- then, with two stat~s p~r cell, tht: ta\lle wiJI 
consist of only 25 = 32 Np,~ry entl'~es.· NQ. m,~H~r 
how cleverly one as~igns th,ese entries, O,I,l~ ~q9:~llt~ 
can't do much with the material at h/l.nd. ",. :' :' -'- -"-. ", -".- . ;.-'" 

However, even in this simple ~a.se, th~ n,1,Wl~~ 9.f 
different laws th~t one clill wtite i& 232 (~9IJlx. 
billion!). Wi~h l1ine n.eighbor~ (as ~n t~~ ~"PJ.~ 9( 
"life "), this ny.mper clil1lbs to 229 (~ (OI5P), m9l;"~ 
than one could e~pl.9re in the uniyerstf& It{C;lhv,e: 
Of cour&e, many of thes,~ will ~ trivi!1,l: ,,~ti~99,~ 
on the saIJ;1.e tbeWe., an"d lllqst wilJ b~ \lJter1y 
uninteresting; put a.t Iea~t w~ \5:now tJ~~J;e, is pl~PJY 
of room 'to plliY. . , . " 

To have even more choice, one can ¥nJa.rg~. tll~ 
neighborhoo~' and use wore than two st~te~~ ~r 
cell. However, in tl}e wany h.o~l's we. bayc;l s~Q.~ . 
trying t.9 cc;)Ost.ru~t rul~s tAat WOl,l19 do wh~t we 
wanted, we ba,ve leame<l that blind exploraU.o~ ()f 

. '.; ._-' ,." .' . .,'", 

such an, «;:1l0I1J?9l,lS t~rritQry is not very r~W~t<!iP'. 
Th'ere are b~tter ways to eXPllPd t~ nU.lll~t: oj' 

cJ:I,oi~ !P ~ ~,m~ctqr~<:l fashion, with more predic~~ 
~l?Je r~y.Jl~, Pl~!pg ~xpq.cit uS,e of llOalogies from 
pb,ysJ~!! ,Q.T .of knqwn combinatorial results. For 
eX-!l-ptp.J~ • .aile 8ln Q}c;I."'e rl.1les th~t are second-order 
ip ljm~ (~,Cl~$ of ~p.e~ a~toma..tically yields behav­
iqr th~! ~ ip.ya~fo!-n~ Il.n9¥! tim~ reversal); one can 
.n.H!.~ $b~ ~~p~I)..4~llt on the parity of space or 
.t~m~ (. Q$l4 qr eV~n ~teps, or blc;l.clc or white squares . .. '. 

P9 Ul,~ AA.~~!l.}Qard);Ql1~ can c()mpose into a 
~~Q~J,.l~ flnPcfQ90de1') ~ small number of 

*~. ~ m¥olYi~~ feW Qei~hb.9rs; etc. 
~n~r fij. ,~¥en tho),l,gh there exists an un­

COJ'H~~l?,l~ pu,m~r of<Ji.ffer~lltj~1 equations, the set 
Af t1il.()~,~ t.hlil~ W,ecan ~x.plicitly write down is qnly 
.CQIJ!!;I@~~ 3p.sl ~Q j~ tbe set of pellul~(-automaton 
rn~"'!g-W~~~si~, ~v~n thoJ.!gh th.e l~n~age of 
~lijW ~~~!~ »~~s ~iffer~p.t primitiv~ than 
Q~f~ti~lMJ1.~tign.~, tQ~J:e is no a priori n~as,on 
W~.¥ \t %b~IJ~Il't hav~ cpmparable expressive 

P~W~f: 
.~~ ~t kfPPfPS., We ~~ve discovered e~tremely 

smml~ ~1l~~r.-~lltomatQn n!l~s for the "heat" ',r., ..• · ..... _, .. -" -,- -, 

~9~~t~Q~ (~ijr~t-9.r!it<r partial 4ifferential equation) 
ClAA t~~ '~w~y~" eq!-lation (second~orQer). These 

. ,- . 

t~Q ~\l~JWg§ ~~~ t\1e comerstones of m\lch mati):" 
~Rl,~~i~l plIY~WS' (Se~ color pl~tes enclosed in [9].) 

3~ ~. ~~~,~ ~f ~Q,,«~mn: t~ tIl.e dynamics of 
~~Wm.t~ 

3.1., (J,e""~~9,li4f!:f 

lite. ~~~. ~.(}~sisWrat~ol1l! s\lggest that, in spite 
I:)f tlw~ ~~li!iq:Il~' ~llulaf; aU,tomata, may still 
s,\l,JlJ?9K~~e ~QA~~ptS. of continuity and Il)etric, 
b~~. Q.p~ ,~~a,~ a§ iJ,l th,e real-number topology. 
~QJ ~~. ~ Ipp.~ el~e'Yl;lere. We shall start with 
s~;mie . mA&~ll~Jlt:,P1l:S consi<i_eratiQns. 
9,b~~, w'~t, ~a,t w~~e thCf set of cell-states is 

finite. a,~ the !?,et of cells is countable, the set of all 
cg~~.t;a.tiplJ.$. (Le., the phase space) is Un­
co~ta,bk" a.n,.g h;l<leed has the cardinality of the 
re~J"l1J,ll.J:l~ co.fJ#"-'fum. Thus, our phase space is as 
la~;~, a,s ~t offin.i!te-differen~ schemes (in spite qf 
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the fact that these use real numbers for cell states). 
In other words, we have as much infinity to play 
with as the other guys - only ours is organized in 
a different way, and locally things are always finite. 

Second, continuity means, intuitively, that we 
can choose states that are so close that their 
successors are still arbitrarily close. But cell states 
belong to a finite set, so that there is a discrete 
jump between one and the other. How can one 
have an arbitrarily small distance between states in 
this situation? 

Third, all cellular automata having the same 
"format" (grid shape, number of states per cell) 
have the same phase space. On the other hand, 
they may have very different dynamics. In each 
dynamics the trajectories will interconnect the 
points of phase space in a totally different way. 
Can we hope to find a single phase-space topol­
ogy that is natural and relevant to all of these 
dynamics? 

3.2. The Cantor-set topology 

Consider the generic cellular automaton. Its 
cell-state set A ("A" for alphabet") is a finite, 
unstructured collection of symbols, and cannot 
but be given the discrete topology. Its phase space 
C ("C" for "configurations") is the Cartesian 
product A S of countably many copies of A, in­
dexed by the elements of the space group S (Le., the 
grid's symmetry group). If S were finite, then C 
would naturally inherit the discrete topology; but 
for an infinite index set the natural topology for the 
Cartesian product is the TychonofJ product topol­
ogy, which is coarser than the discrete topology. In 
the product topology, open sets can be visualized 
as follows. Let us assign definite values to a finite 
number of cells, and consider the set of all 
configurations that match the given assignment 
(i.e., the values of all other cells are "don't care's.") 
Call such a set a pattern. Then an open is an 
arbitrary collection of patterns. 

* I am indebted to Leonid Levin and Douglas Lind for 
formulating it and suggesting its use in proposition I. 

If the terms of the countable Cartesian product 
are finite sets (having, of course, more than one 
element), as in our case, then the Tychnoff product 
topology coincides with the topology of the famil­
iar Cantor set ( ... take the unit segment on the real 
line, remove the middle third, and iterate on what 
is left.) Thus, we get the same "Cantor-set" topol­
ogy for all nontrivial cellular automata (Le., those 
having at least one dimension and at least two 
states per cell). 

3.3. A topological characterization of cellular auto­
mata 

Now, one can prove the following. Let r be the 
automaton's global map (Le., its dynamics, or the 
generator of the time group). Then, for all cellular 
automata, 

Property 1 (continuity). r is continuous with respect 
to the Cantor-set topology [7]. 

We also know that, by definition, 

Property 2 (commutativity). r commutes with any 
element u of S (the space group) 

(Briefly, time and space commute.) Finally, for 
every cellular automaton 

Property 3 (local finiteness). There exists a con­
tinuous function q: C -+Q, where Q is a finite set, 
such that, if c, c' are distinct cOAfigurations, there 
exist a shift u eS for which qu(c) =1= qu(c'). 

By taking Q = A, q can be interpreted as a 
"window" function which projects a configuration 
on the coordinate axis of a selected cell. This 
obvious property is used in proposition I below to 
rule out certain pathological cases·. 

The important fact in all of this is that, among 
the dynamical systems consisting of the Cantor set 
with a dynamics r and a discrete group of trans­
formations u, 
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Proposition 1. Properties 1-3 above constitute a 
complete characterization of cellular automata. 

Thus, we see that, in addition to local finiteness 
and commutativity between space and time (prop­
erties which are put in the very definition of a 
cellular automaton), continuity in the Cantor-set 
topology is the characterizing property of the dy­
namics of cellular automata. (The various com­
ponents of this characterization were rediscovered 
in bits and pieces by several workers in cellular­
automaton theory - including myself [8] - but had 
been known for a while, under the heading of 
"shift dynamical systems," to more professional 
mathematicians [4, 5].) 

3.4. The local point of view 

We shall try to interpret the results of the above 
subsection. 

The main point is that to understand what goes 
on in a cellular automaton it is not necessary to 
look at an entire, infinite configuration. Rather, 
one's attention can be turned to specific place, and 
one's scope should be widened, in concentric cir­
cles, so to speak, only as longer and longer evo­
lution times are considered. Thus, the customary 
picture which represents the state of a system as a 
point tracing an orbit in phase space is somewhat 
misleading: in general, we cannot handle in a 
finitary way the exact position of the point itself 
(which encodes an infinite amount of information); 
on the other hand, we can project the point on a 
finite subset of axes, and we can enlarge this subset 
as need requires. We shouldn't try to (and, at any 
rate, we can't) take in the whole picture! 

We shall give but one example of the '~con­

spiracy" that forces us to take a local viewpoint. 

• To make the connections with the traditional ~~ criterion 
for continuity, recall an obvious property of cellular automata, 
i.e., that the speed of propagation of information is bounded. 
If two configurations coincide within a radius r, and thus have 
a distance less than ~2-' then their successors will coincide 
within a radius of at least r - I, and thus their distance will be 
less than ~2-('-1). This is all that is needed to arrive at a ~~ 
criterion. 

The Cantor set is a metric space, that is, it admits 
of metrics compatible with its topology. What 
does this repertoire of metrics have to offer? We are 
faced with the problem of finding a satisfactory 
metric (a yardstick for "closeness") for a uniform 
system that extends infinitely in space. Because of 
spatial symmetry, all cells "look the same;" intu­
itively, we would require of our metric that if we 
change a 0 into a 1 in a given cell, we should move 
away a certain distance in phase space, and this 
dista:n€e should be the same no matter which cell 
we choose. But it turns out [8] that none of such 
"uniform" metrics is compatible with the Cantor­
set topology; in which direction should we relax 
our requirements? 

Here is one way. In spite of being immersed in 
a uniform sea of cells, we shall pick one arbitrarily. . 
By what criterion? Well, by where we are! In 
comparing two configurations, we make a list of 
the places where they don't match; a mismatch 
occurring "here" will be given a weight of~, and 
in general any mismatch occurring within a shell of 
thickness 1 and radius r will be given a weight 
2-(r+ I)krd - I (where d is the dimensionality of the 
space), so that successive shells will contribute at 
most 1/4, 1/8, etc. Thus, the distance between two 
identical configurations will be 0 and the distance 
between two configurations that differ everywhere 
will be 1. This metric is compatible with the Cantor 
topology. In this metric, two configurations get 
closer and closer as the nearest point where they 
differ moves away from us*. Quite seriously, we 
could characterize the Cantor topology as the 
topology of self-centeredness. What is nice is that 
other observers, with their own center of interest 
different from ours, may choose their own version 
of the metric, but nonetheless we will all agree on 
the same topology. 

4. Conclusions 

We have presented and motivated a new mathe­
matical approach to the modeling of distributed 
physical systems. This approach is suggested by the 
availability of new, high-performance simulation 

't. .. 
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tools, and yields models whose formal structure 
closely matches that of the available com­
putational resources. 

In particular, we have discussed a concept of 
continuity that is adequate for an operational 
approach to physics over the whole range from 
macroscopics to microscopics, and yet does not 
postulate, like differential equations, an infinite 
amount of information within a finite volume. 
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